2,013
Views
6
CrossRef citations to date
0
Altmetric
Original Report

Pulsed laser deposition of epitaxial Cr2AlC MAX phase thin films on MgO(111) and Al2O3(0001)

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 343-349 | Received 04 Feb 2021, Published online: 04 May 2021

References

  • Barsoum MW. The M(x+1)AX(x) phases: a new class of solids; thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28:201–281.
  • Högberg H, Hultman L, Emmerlich J, et al. Growth and characterization of MAX-phase thin films. Surf Coat Technol. 2005;193(1–3):6–10.
  • Eklund P, Rosen J, Persson PO. Layered ternary Mn+1AXn phases and their 2D derivative MXene: an overview from a thin-film perspective. J Phys D Appl Phys. 2017;50:113001.
  • Ingason AS, Dahlqvist M, Rosen J. Magnetic MAX phases from theory and experiments; a review. J Phys-Condens Mater. 2016;28(43):433003.
  • Sun ZM. Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev. 2013;56(3):143–166.
  • Salikhov R, Semisalova AS, Petruhins A, et al. Magnetic anisotropy in the (Cr0.5Mn0.5)2GaC MAX phase. Mater Res Lett. 2015;3(3):156–160.
  • Novoselova IP, Petruhins A, Wiedwald U, et al. Large uniaxial magnetostriction with sign inversion at the first order phase transition in the nanolaminated Mn2GaC MAX phase. Sci Rep. 2018;8:2637.
  • Dahlqvist M, Rosen J. Impact of strain, pressure, and electron correlation on magnetism and crystal structure of Mn2GaC from first-principles. Sci Rep. 2020;10(1):11384.
  • Ito T, Pinek D, Fujita T, et al. Electronic structure of Cr2AlC as observed by angle-resolved photoemission spectroscopy. Phys Rev B. 2017;96(19):195168.
  • Badr HO, Champagne A, Ouisse T, et al. Elastic properties and hardness values of V2AlC and Cr2AlC single crystals. Phys Rev Mater. 2020;4(8):083605.
  • Scabarozi TH, Amini S, Finkel P, et al. Electrical, thermal, and elastic properties of the MAX-phase Ti2SC. J Appl Phys. 2008;104(3):033502.
  • Tian W, Wang P, Zhang G, et al. Synthesis and thermal and electrical properties of bulk Cr2AlC. Scr Mater. 2006;54(5):841–846.
  • Siebert JP, Bischoff L, Lepple M, et al. Sol–gel based synthesis and enhanced processability of MAX phase Cr2GaC. J Mater Chem C. 2019;7(20):6034–6040.
  • Ingason AS, Petruhins A, Rosen J. Toward structural optimization of MAX phases as epitaxial thin films. Mater Res Lett. 2016;4(3):152–160.
  • Högberg H, Eklund P, Emmerlich J, et al. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering. J Mater Res. 2005;20(4):779–782.
  • Tao Q, Salikhov R, Mockute A, et al. Thin film synthesis and characterization of a chemically ordered magnetic nanolaminate (V,Mn)3GaC2. APL Mater. 2016;4(8):086109.
  • Sobolev KV, Kolincio KK, Emelyanov A, et al. Evolution of magnetic and transport properties in (Cr1-xMnx)2AlC MAX-phase synthesized by arc melting technique. J Magn Magn Mater; 493:165642.
  • Hamm CM, Duerrschnabel M, Molina-Luna L, et al. Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V2AlC and (V/Mn)2AlC. Mater Chem Front. 2018;2(3):483–490.
  • Salikhov R, Meshkian R, Weller D, et al. Magnetic properties of nanolaminated (Mo0.5Mn0.5)2GaC MAX phase. J Appl Phys. 2017;121(16):163904.
  • Su R, Zhang H, Meng X, et al. Synthesis of Cr2AlC thin films by reactive magnetron sputtering. Fusion Eng Des. 2017;125:562–566.
  • Qureshi MW, Ma X, Tang G, et al. Fabrication and mechanical properties of Cr2AlC MAX phase coatings on TiBw/Ti6Al4V composite prepared by HiPIMS. Mater. 2021;14(4):826.
  • Eason R. Pulsed laser deposition of thin films: applications-Led growth of functional materials. Hoboken (NJ): Wiley; 2007.
  • Trautvetter M, Wiedwald U, Paul H, et al. Thermally driven solid-phase epitaxy of laser-ablated amorphous AlFe films on (0001)-oriented sapphire single crystals. Appl Phys A. 2011;102(3):725–730.
  • Yao X, Wiedwald U, Trautvetter M, et al. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition. J Appl Phys. 2014;115(2):023507.
  • Lange C. Construction of a pulsed laser deposition (PLD) system and investigations on PLD in the MAX phase systems Ti-Si-C, Cr-Al-C and Ti-Al-N [dissertation]. Göttingen: Georg-August-University at Göttingen; 2009. German.
  • Lange C, Barsoum MW, Schaaf P. Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition. Appl Surf Sci. 2007;254(4):1232–1235.
  • Lange C, Hopfeld M, Wilke M, et al. Pulsed laser deposition from a pre-synthesized Cr2AlC MAX phase target with and without ion-beam assistance. Phys Status Solidi A. 2012;209(3):545–552.
  • Phani AR, Krzanowski JE. Structural and mechanical properties of TiC and Ti-Si-C films deposited by pulsed laser deposition. J Vac Sci Technol A. 2001;19:2252.
  • Eklund P, Palmquist JP, Wilhelmsson O. et al. Comment on “Pulsed laser deposition and properties of Mn+1AXx phase formulated Ti3SiC2 thin films”. Tribol Lett. 2014;17:977–978.
  • Hu JJ, Zabinski JS. Reply to the comment on “Pulsed laser deposition and properties of M n+1AX n phase formulated Ti3SiC2 thin films”. Tribol Lett. 2004;17:979–982.
  • Hu J, Bultman J, Patton S, et al. Pulsed laser deposition and properties of Mn+1AXn phase formulated Ti3SiC2 thin films. Tribol Lett. 2004;16:113–122.
  • Biswas A, Sengupta A, Rajput U, et al. Growth, properties, and applications of pulsed laser deposited nanolaminate Ti3AlC2 thin films. Phys Rev Appl. 2020;13(4):044075.
  • Rues H, Mto B, Mraz S, et al. HPPMS deposition from composite targets: effect of two orders of magnitude target power density changes on the composition of sputtered Cr-Al-C thin film. Vacuum. 2017;145:285–289.
  • Hogan DW, Dyson DJ. Angles between planes in the hexagonal and tetragonal crystal systems. Micron. 1970;2:59–61.
  • Patterson AL. The Scherrer formula for X-Ray particle size determination. Phys Rev. 1939;56(10):978–982.
  • Volmer M, Weber A. Nucleation in supersaturated formations. Z Phys Chem. 1926;119U(1):277–301. German.
  • Römer FM, Wiedwald U, Strusch T, et al. Controlling the conductivity of Ti3C2 MXenes by inductively coupled oxygen and hydrogen plasma treatment and humidity. RSC Adv. 2017;7(22):13097–13103.
  • Ying G, He X, Li M, et al. Effect of Cr7C3 on the mechanical, thermal, and electrical properties of Cr2AlC. J Alloys Compd. 2011;509(31):8022–8027.
  • Hettinger JD, Lofland SE, Finkel P, et al. Electrical transport, thermal transport, and elastic properties of M2AlC(M = Ti,Cr,Nb, and V). Phys Rev B. 2005;72(11).
  • Zhou WB, Mei BC, Zhu JQ. On the synthesis and properties of bulk ternary Cr2AlC ceramics. Mater Sci-Poland. 2009;24(4):973–980.
  • Field MR, Carlsson P, Eklund P, et al. A combinatorial comparison of DC and high power impulse magnetron sputtered Cr2AlC. Surf Coat Technol. 2014;259:746–750.
  • Stelzer B, Chen X, Bliem P, et al. Remote tracking of phase changes in Cr2AlC thin films by In-situ resistivity measurements. Sci Rep. 2019;9(1):8266.
  • Naragan J, Larson BC. Domain epitaxy: a unified paradigm for thin film growth. J Appl Phys. 2003;93(1):278.