3,239
Views
9
CrossRef citations to date
0
Altmetric
Original Report

Ultra-high heating rate effects on the sintering of ceramic nanoparticles: an in situ TEM study

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 373-381 | Received 19 Feb 2021, Published online: 21 May 2021

References

  • Lu K. Sintering of nanoceramics. Int Mater Rev. 2008;53:21–38.
  • Chaim R, Levin M, Shlayer A, et al. Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv Appl Ceram. 2008;107:159–169.
  • Chen I-W, Wang X-H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature. 2000;404:168–171.
  • Chu M, Rahaman MN, Jonghe LC, et al. Effect of heating rate on sintering and coarsening. J Am Ceram Soc. 1991;74:1217–1225.
  • Su H, Johnson DL. Master sintering curve: a practical approach to sintering. J Am Ceram Soc. 1996;79:3211–3217.
  • Rahaman MN. Ceramic processing and sintering [internet]. 2nd ed. Boca Raton: CRC Press; 2007.
  • Brook RJ. Fabrication principles for the production of ceramics with superior mechanical properties. Proc Br Ceram Soc. 1982;32:7–24.
  • Lin FJT, Jonghe LC, Rahaman MN. Initial coarsening and microstructural evolution of fast-fired and MgO-doped Al2O3. J Am Ceram Soc. 1997;80:2891–2896.
  • García DE, Seidel J, Janssen R, et al. Fast firing of alumina. J Eur Ceram Soc. 1995;15:935–938.
  • Jha SK, Phuah XL, Luo J, et al. The effects of external fields in ceramic sintering. J Am Ceram Soc. 2018;102:5–31.
  • Ji W, Parker B, Falco S, et al. Ultra-fast firing: effect of heating rate on sintering of 3YSZ, with and without an electric field. J Eur Ceram Soc. 2017;37:2547–2551.
  • Ji W, Zhang J, Wang W, et al. The microstructural origin of rapid densification in 3YSZ during ultra-fast firing with or without an electric field. J Eur Ceram Soc. 2020;40:5829–5836.
  • Xu G, Lloyd IK, Carmel Y, et al. Microwave sintering of ZnO at ultra high heating rates. J Mater Res. 2001;16:2850–2858.
  • Munir ZA, Quach D V, Ohyanagi M. Electric Current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc. 2011;94:1–19.
  • Grasso S, Sakka Y, Rendtorff N, et al. Modeling of the temperature distribution of flash sintered zirconia. J Ceram Soc Japan. 2011;119:144–146.
  • Eqbal A, Arya KS, Chakrabarti T. In-depth study of the evolving thermal runaway and thermal gradient in the dog bone sample during flash sintering using finite element analysis. Ceram Int. 2020;46:10370–10378.
  • Wang C, Ping W, Bai Q, et al. A general method to synthesize and sinter bulk ceramics in seconds. Science. 2020;368:521–526.
  • Chen D-J, Mayo MJ. Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3. J Am Ceram Soc. 1996;79:906–912.
  • Ewsuk KG, Ellerby DT, DiAntonio CB. Analysis of nanocrystalline and microcrystalline ZnO sintering using master sintering curves. J Am Ceram Soc. 2006;89:2003–2009.
  • Wang CM, Li X, Wang Z, et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 2012;12:1624–1632.
  • Zeng Z, Liang WI, Liao HG, et al. Visualization of electrode-electrolyte interfaces in LiPF 6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 2014;14:1745–1750.
  • Kwon J, Sharma AA, Bain JA, et al. Oxygen vacancy creation, drift, and aggregation in TiO2-based resistive switches at low temperature and voltage. Adv Funct Mater. 2015;25:2876–2883.
  • Li C, Gao B, Yao Y, et al. Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv Mater. 2017;29:1–8.
  • Simonsen SB, Chorkendorff I, Dahl S, et al. Direct Observations of oxygen-induced platinum nanoparticle Ripening studied by In situ TEM. J Am Chem Soc. 2010;132:7968–7975.
  • Challa SR, Delariva AT, Hansen TW, et al. Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening. J Am Chem Soc. 2011;133:20672–20675.
  • Rankin J, Sheldon BW. In situ TEM sintering of nano-sized ZrO2 particles. Mater Sci Eng A. 1995;204:48–53.
  • Majidi H, Holland TB, van Benthem K. Quantitative analysis for in situ sintering of 3% yttria-stabilized zirconia in the transmission electron microscope. Ultramicroscopy. 2015;152:35–43.
  • Kocjan A, Logar M, Shen Z. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Sci Rep. 2017;7:2541.
  • Majidi H, van Benthem K. Effects of non-contact electric fields on consolidation behavior of agglomerated yttria-stablized zirconia. Microsc Microanal. 2015;21:1511–1512.
  • Shi J-L, Deguchi Y, Sakabe Y. Relation between grain growth, densification and surface diffusion in solid state sintering – a direct observation. J Mater Sci. 2005;40:5711–5719.
  • Hotza D, García DE, Castro RHR. Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering. Int Mater Rev. 2015;60:353–375.
  • Mazaheri M, Zahedi AM, Sadrnezhaad SK. Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth. J Am Ceram Soc. 2007;91:56–63.
  • Hynes AP, Doremus RH, Siegel RW. Sintering and characterization of nanophase zinc oxide. J Am Ceram Soc. 2002;85:1979–1987.
  • Kim D-H, Kim CH. Effect of heating rate on pore shrinkage in yttria-doped zirconia. J Am Ceram Soc. 1993;76:1877–1878.
  • Zhang J, Huang F, Lin Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale. 2010;2:18–34.
  • Prajzler V, Salamon D, Maca K. Pressure-less rapid rate sintering of pre-sintered alumina and zirconia ceramics. Ceram Int. 2018;44:10840–10846.
  • Lee IG, Chen I-W. Sintering and grain growth in tetragonal and cubic zirconia. Sinter. 1988;87:340–345.
  • Gómez SY, da Silva AL, Gouvêa D, et al. Nanocrystalline yttria-doped zirconia sintered by fast firing. Mater Lett. 2016;166:196–200.
  • Matsui K, Yoshida H, Ikuhara Y. Grain-boundary structure and microstructure development mechanism in 2–8mol% yttria-stabilized zirconia polycrystals. Acta Mater. 2008;56:1315–1325.
  • Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv Funct Mater. 2007;17:3267–3273.
  • Vanrompay H, Buurlage J, Pelt DM, et al. Real-time reconstruction of arbitrary slices for quantitative and in situ 3D characterization of nanoparticles. Part Part Syst Charact. 2020;37:2000073.