3,130
Views
9
CrossRef citations to date
0
Altmetric
Original Report

n-Type thermoelectric metal chalcogenide (Ag,Pb,Bi)(S,Se,Te) designed by multi-site-type high-entropy alloying

, , ORCID Icon, , &
Pages 366-372 | Received 11 Feb 2021, Published online: 21 May 2021

References

  • Yang L, Chen ZG, Dargusch MS, et al. High performance thermoelectric materials: progress and their applications. Adv Energy Mater. 2018;8(6):1701797.
  • Heremans JP, Jovovic V, Toberer ES, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008: 321(5888):554–557.
  • Wang H, Pei Y, LaLonde AD, et al. Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. Adv Mater. 2011;23(11):1366–1370.
  • Wang H, Schechtel E, Pei Y, et al. High thermoelectric efficiency of n-type PbS. Adv Energy Mater. 2013;3(4):488–495.
  • Jood P, Ohta M, Yamamoto A, et al. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule. 2018;2(7):1339–1355.
  • Zhang Q, Cao F, Liu W, et al. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1–ySey. J Am Chem Soc. 2012;134(24):10031–10038.
  • Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66–69.
  • Wang H, LaLonde AD, Pei Y, et al. The criteria for benefical disorder in thermoelectric solid solutions. Adv Funct Mater. 2013;23(12):1586–1596.
  • Yamini SA, Wang H, Gibbs ZM, et al. Chemical composition tuning in quaternary p-type Pb-chalcogenides – a promising strategy for enhanced thermoelectric performance. Phys Chem Chem Phys. 2014;16(5):1835–1840.
  • Yamini SA, Mitchell DRG, Gibbs ZM, et al. Heterogeneous distribution of sodium for high thermoelectric performance of p-type multiphase lead-chalcogenides. Adv Energy Mater. 2015;5(21):1501047.
  • Dutta M, Pal K, Waghmare UV, et al. Bonding heterogeneity and lone pair induced anharmonicity resulted in ultralow thermal conductivity and promising thermoelectric properties in n-type AgPbBiSe3. Chem Sci. 2019;10:4905–4913.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.
  • Tsai MH, Yeh JW. High-entropy alloys: A critical review. Mater Res Lett. 2014;2(3):107–123.
  • Kitagawa J, Hamamoto S, Ishizu N. Cutting edge of high-entropy alloy superconductors from the perspective of materials research. Metals (Basel). 2020;8:1078.
  • Sogabe R, Goto Y, Mizuguchi Y. Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers. Appl Phys Express. 2018;11:053102.
  • Sogabe R, Goto Y, Abe T, et al. Improvement of superconducting properties by high mixing entropy at blocking layers in BiS2-based superconductor REO0.5F0.5BiS2. Solid State Commun. 2019;295:43–49.
  • Mizuguchi Y. Superconductivity in high-entropy-alloy telluride AgInSnPbBiTe5. J Phys Soc Jpn. 2019;88:124708.
  • MdR K, Hoshi K, Jha R, et al. Superconducting properties of high-entropy-alloy tellurides M-Te (M: Ag, In, Cd, Sn, Sb, Pb, Bi) with a NaCl-type structure. Appl Phys Express. 2020;13(3):033001.
  • Shukunami Y, Yamashita A, Goto Y, et al. Synthesis of RE123 high-Tc superconductors with a high-entropy-alloy-type RE site. Physica C. 2020;572:1353623.
  • Yamashita A, Jha R, Goto Y, et al. An efficient way of increasing the total entropy of mixing in high-entropy-alloy compounds: a case of NaCl-type (Ag,In,Pb,Bi)Te1-xSex (x = 0.0, 0.25, 0.5) superconductors. Dalton Trans. 2020;49:9118–9122.
  • Mizuguchi Y, Kasem M, Matsuda TD. Superconductivity in CuAl2-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a high-entropy-alloy transition metal site. Mater Res Lett. 2020;9(3):141–147.
  • Kasem MR, Yamashita A, Goto Y, et al. Synthesis of high-entropy-alloy-type superconductors (Fe,Co,Ni,Rh,Ir)Zr2 with tunable transition temperature. arXiv:2011.05590.
  • Shuai J, Mao J, Song S, et al. Recent progress and future challenges on thermoelectric zintl materials. Mater Today Phys. 2017;1:74–95.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • Shafeie S. High-entropy alloys as high-temperature thermoelectric materials. J Appl Phys. 2015;118(184905):1–10.
  • Yan J, Liu F, Ma G, et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scr Mater. 2018;157:129–134.
  • Karati A, Nagini M, Ghosh S, et al. Ti2NiCoSnSb - a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications. Sci Rep. 2019;9:5331.
  • Luo Y, Hao S, Cai S, et al. High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering. J Am Chem Soc. 2020;142(35):15187–15198.
  • Jiang B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science. 2021;371(6531):830–834.
  • Kawaguchi S, Takemoto M, Osaka K, et al. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev Sci Instrum. 2017;88(8):085111–085120.
  • Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007;130:15–20.
  • Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008;41:653–658.
  • Zhou M, Li J-F, Kita T. Nanostructured agpbmsbtem+2 system bulk materials with enhanced thermoelectric performance. J Am Chem Soc. 2008;130(13):4527–4532.
  • Huang Z, Wang D, Li C, et al. Improving the thermoelectric performance of p-type PbSe via synergistically enhancing the Seebeck coefficient and reducing electronic thermal conductivity. J Mater Chem A. 2020;8(9):4931–4937.
  • Liu R, Chen H, Zhao K, et al. Entropy as a gene-like Performance indicator promoting thermoelectric materials. Adv Mater. 2017;29:1702712–1702718.
  • Stolze K, Tao J, von Rohr FO, et al. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem Mater. 2018;30:906–914.
  • Kim H-S, Gibbs ZM, Tang Y, et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015;3:041506–04041510.