2,461
Views
9
CrossRef citations to date
0
Altmetric
Original Report

Facile preparation of MoP/TiO2 composite by electrospinning method for sodium ion battery anode

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , & show all
Pages 382-390 | Received 04 May 2021, Published online: 14 Jul 2021

References

  • Sultana I, Rahman MM, Ramireddy T, et al. High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A. 2017;5(45):23506–23512.
  • Wu X, Leonard DP, Ji X. Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem Mater. 2017;29(12):5031–5042. 2017/06/27
  • Chang G, Zhao Y, Dong L, et al. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J Mater Chem A. 2020;8(10):4996–5048.
  • Song K, Liu C, Mi L, et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small. 2021;17(9):e1903194.
  • Yu S, Kim S-O, Kim H-S, et al. Computational screening of anode materials for sodium-ion batteries. J Electrochem Soc. 2019;166(10):A1915–A1919.
  • Cao Y, Zhang B, Ou X, et al. Facile synthesis of a molybdenum phosphide@carbon nanocomposite as an advanced anode material for sodium-ion batteries. New J Chem. 2019;43(19):7386–7392.
  • Huang Z, Hou H, Wang C, et al. Molybdenum phosphide: A conversion-type anode for ultralong-life sodium-ion batteries. Chem Mater. 2017;29(17):7313–7322.
  • Jiang Y, Shen Y, Dong J, et al. Surface pseudocapacitive mechanism of molybdenum phosphide for high-energy and high-power sodium-ion capacitors. Adv Energy Mater. 2019;9(27).e1900967.
  • Ma C, Deng C, Liao X, et al. Urchin-like MoP nanocrystals embedded in N-doped carbon as high rate lithium Ion battery anode. ACS Appl Energy Mater. 2018;1(12):7140–7145.
  • Wang X, Sun P, Qin J, et al. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale. 21;8(19):10330–8.
  • Yin Y, Fan L, Zhang Y, et al. MoP hollow nanospheres encapsulated in 3D reduced graphene oxide networks as high rate and ultralong cycle performance anodes for sodium-ion batteries. Nanoscale. 11;11(15):7129–7134.
  • Hou X, Li W, Wang Y, et al. Sodium-based dual-ion batteries via coupling high-capacity selenium/graphene anode with high-voltage graphite cathode. Chin Chem Lett. 2020;31(9):2314–2318.
  • Wang Y-Y, Hou B-H, Guo J-Z, et al. An ultralong lifespan and low-temperature workable sodium-Ion full battery for stationary energy storage. Adv Energy Mater. 2018;8(18).e1900967.
  • Wang Y, Liu Y, Liu Y, et al. Recent advances in electrospun electrode materials for sodium-ion batteries. J Energy Chem. 2021;54:225–241.
  • Fan S, Wang H, Qian J, et al. Covalently bonded silicon/carbon nanocomposites as cycle-stable anodes for li-ion batteries. ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16411–16416.
  • Rehman WU, Wang H, Manj RZA, et al. When silicon materials meet natural sources: opportunities and challenges for low-cost lithium storage. Small. 2021 Mar;17(9):e1904508.
  • Zeng F, Yang L, Pan Y, et al. Granular molybdenum dioxide precipitated on N-doped carbon nanorods with multistage architecture for ultralong-life sodium-ion batteries. Electrochim Acta. 2019;325.
  • Zeng F, Yu M, Cheng W, et al. Tunable surface selenization on MoO2-based carbon substrate for notably enhanced sodium-ion storage properties. Small. 2020 Oct;16(41):e2001905.
  • Li H-H, Saini A, Xu R-Y, et al. Hierarchical Fe3O4@C nanofoams derived from metal–organic frameworks for high-performance lithium storage. Rare Met. 2020;39(9):1072–1081.
  • Huang H, Luo X, Yao Y, et al. Binding Se into nitrogen-doped porous carbon nanosheets for high-performance potassium storage. InfoMat. 2021;3(4):421–431.
  • Yang Y, Luo M, Xing Y, et al. A universal strategy for intimately coupled carbon nanosheets/MoM nanocrystals (M = P, S, C, and O) hierarchical hollow nanospheres for hydrogen evolution catalysis and sodium-ion storage. Adv Mater. May;30(18):e1706085.
  • Cui Z, Guo CX, Yuan W, et al. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors. Phys Chem Chem Phys. 2012;14(37):12823–12828.
  • Zong W, Chui N, Tian Z, et al. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv Sci (Weinh. 2021 Apr;8(7):2004142.
  • Huang M, Chu Y, Xi B, et al. TiO2-based heterostructures with different mechanism: a general synergistic effect toward high-performance sodium storage. Small. 2020 Oct;16(42):e2004054.
  • Ni M, Sun D, Zhu X, et al. Fluorine triggered surface and lattice regulation in anatase TiO2-xFx nanocrystals for ultrafast pseudocapacitive sodium storage. Small. 2020;16(50):e2006366.
  • Luo R, Ma Y, Qu W, et al. High pseudocapacitance boosts ultrafast, high-capacity sodium storage of 3D graphene foam-encapsulated TiO2 architecture. ACS Appl Mater Interfaces. 2020 May 27;12(21):23939–23950.
  • Gao M, Cui X, Wang R, et al. Graphene-wrapped mesoporous MnCO3 single crystals synthesized by a dynamic floating electrodeposition method for high performance lithium-ion storage. J Mater Chem A. 2015;3(27):14126–14133.
  • Li Q, Liu Z, Wang C, et al. Doping of Ni and Zn elements in MnCO3: high-power anode material for lithium-ion batteries. Small. 2018;14(7).e1900967.
  • Guo J, Liu Q, Wang C, et al. Interdispersed amorphous MnOx-carbon nanocomposites with superior electrochemical performance as lithium-storage material. Adv Funct Mater. 2012;22(4):803–811.