6,870
Views
29
CrossRef citations to date
0
Altmetric
Perspective Piece

Architecturing materials at mesoscale: some current trends

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 399-421 | Received 01 Jul 2021, Published online: 06 Aug 2021

References

  • Ashby MF. Designing architectured materials. Scr Mater. 2013;68:4–7.
  • Estrin Y, Bréchet Y, Dunlop J, et al. Architectured materials in nature and engineering. Cham, Switzerland: Springer Nature; 2019.
  • Haken H. Information and self-organization. A macroscopic approach to complex systems. Berlin: Springer; 2006.
  • Kanit T, Forest S, Galliet I, et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct. 2003;40(13–14):3647–3679.
  • Imry Y. Introduction to mesoscopic physics (mesoscopic physics and nanotechnology). New York: Oxford University Press; 2008.
  • Beygelzimer Y, Spuskanyuk A. The thick yield surface: an idea and approach for investigating its structure. Phil Mag A. 1999;79:2437–2459.
  • Thom R. Structural stability and morphogenesis. London: W.A. Benjamin; 1975.
  • Sass SL. The substance of civilization: materials and human history from the stone age to the age of silicon. New York: Arcade; 1998.
  • Cahn RW. The coming of materials science. Pergamon Materials Series. New York: Pergamon; 2001.
  • Fleck NA, Deshpande VS, Ashby MF. Micro-architectured materials: past, present, and future. Proc Roy Soc A. 2010;466:2495–2516.
  • Greer JR, Deshpande VS. Three-dimensional architected materials and structures: design, fabrication, and mechanical behavior. MRS Bull. 2019;44:750–757.
  • Ashby MF. Materials selection in mechanical design. Burlington (MA): Butterworth-Heinemann Elsevier; 2011.
  • Dyskin AV, Estrin Y, Kanel-Belov A, et al. A new concept in design of materials and structures: assemblies of interlocked tetrahedron-shaped elements. Scr Mater. 2001;44:2689–2694.
  • Dyskin AV, Estrin Y, Kanel-Belov A, et al. Toughening by fragmentation—how topology helps. Adv Eng Mater. 2001;3(11):885–888.
  • Estrin Y, Dyskin AV, Pasternak E. Topological interlocking as a material design concept. Mater Sci Eng C. 2011;31:1189–1194.
  • Dyskin AV, Estrin Y, Belov-Kanel A, et al. Topological interlocking of platonic solids: a way to new materials and structures. Phil Mag Lett. 2003;83(3):197–203.
  • Kanel-Belov A, Dyskin AV, Estrin Y, et al. Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. Moscow Math J. 2010;10:337–342.
  • Weizmann M, Amir O, Grobman YJ. Topological interlocking in buildings: a case for the design and construction of floors. Autom Constr. 2016;72:18–25.
  • Vella IM, Kotnik T. Geometric versatility of abeille vault. A stereotomic, topological interlocking assembly. 34th Annual eCAADe. 2016;34:391–397.
  • Bejarano A, Hoffmann C. A generalized framework for designing topological interlocking configurations. Int J Archit Comput. 2019;17:53–73.
  • Viana V. Topological interlocking of convex regular polyhedra. In: Leopold C, Robeller C, Weber U, editors. RCA 2018, Conference book; September 27-28. TU Kaiserslautern, Germany. 2018:255–257.
  • Piekarski M. Floor slabs made from topologically interlocking prefabs of small size. Build. 2020;10(4):76.
  • Subramanian SG, Eng M, Krishnamurthy VR, et al. Delaunay lofts: a biologically inspired approach for modeling space filling modular structures. Comp Graph. 2019;82:73–83.
  • Krishnamurthy VR, Akleman E, Subramanian SG, et al. Geometrically interlocking space-filling tiling based on fabric weaves. 2021; in press.
  • Estrin Y, Krishnamurthy V, Akleman E. Design of architectured materials based on topological and geometrical interlocking. J Mater Res Techn. 2021; in press.
  • Krause T, Molotnikov A, Carlesso M, et al. Mechanical properties of topologically interlocked structures with elements produced by freeze gelation of ceramic slurries. Adv Eng Mater. 2012;14:335–341.
  • Khandelwal S, Siegmund T, Cipra RJ, et al. Transverse loading of cellular topologically interlocked materials. Int J Solids Struct. 2012;49:2394–2403.
  • Mirkhalaf M, Zhou T, Barthelat F. Simultaneous improvements of strength and toughness in topologically interlocked ceramics. PNAS. 2018;115(37):9128–9133.
  • Feng Y, Siegmund T, Habtour E, et al. Impact mechanics of topologically interlocked material assemblies. Intl J Impact Eng. 2015;75:140–149.
  • Djumas L, Simon GP, Estrin Y, et al. Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry. Sci Rep. 2017;7:11844.
  • Molotnikov A, Estrin Y, Dyskin AV, et al. Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elements. Eng Fract Mech. 2007;74(8):1222–1232.
  • Ashby M, Brechet Y. Designing hybrid materials. Acta Mater. 2003;51(19):5801–5821.
  • Carlesso MV, Giacomelli RO, Krause T, et al. Improvement of sound absorption and flexural compliance of porous alumina-mullite ceramics by engineering the microstructure and segmentation into topologically interlocked blocks. J European Ceram Soc. 2013;33:2549–2558.
  • Meyers MA, Chen PY, Lin YM, et al. Biological materials: structure and mechanical properties. Prog Mater Sci. 2008;53:1–206.
  • Valdevit L, Jacobsen AJ, Greer JR, et al. Protocols for the optimal design of multi-functional cellular structures: from hypersonics to micro-architected materials. J Am Ceram Soc. 2011;94:15–34.
  • Gibson LJ, Ashby MF. Cellular solids, structure and properties. New York: Cambridge University Press; 1997.
  • Ashby MF. The properties of foams and lattices. Phil Trans R Soc A. 2006;364:15–30.
  • Benedetti M, Plessis A, Ritchie RO, et al. Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater Sci Eng R. 2011;144:100606.
  • Zheng X, Smith W, Jackson J, et al. Multiscale metallic metamaterials. Nature Mater. 2016;15:1100–1106.
  • Schwaiger R, Meza LR, Li X. The extreme mechanics of micro- and nanoarchitected materials. MRS Bull. 2019;44:758–765.
  • Kadic M, Milton GW, Hecke M, et al. 3D metamaterials. Nat Rev Phys. 2019;1:198–210.
  • Phani AS, Hussein MI. Dynamics of lattice materials. Chichester: Wiley; 2017.
  • Bauer J, Meza LR, Schaedler TA, et al. Nanolattices: an emerging class of mechanical metamaterials. Adv Mater. 2017;29(40):1701850.
  • Ziemke P, Frenzel T, Wegener M, et al. Tailoring the characteristic length scale of 3D chiral mechanical metamaterials. Extr Mech Lett. 2019;32:100553.
  • Findeisen C, Hohe J, Kadic M, et al. Characteristics of mechanical metamaterials based on buckling elements. J Mech Phys Solids. 2017;102:151–164.
  • Fernandes MC, Aizenberg J, Weaver JC, et al. Mechanically robust lattices inspired by deep-sea glass sponges. Nat Mater. 2021;20:237–241.
  • Ryvkin M, Slesarenko V, Cherkaev A, et al. Fault-tolerant elastic–plastic lattice material. Phil Trans R Soc A. 2020;10:20190107.
  • Cabras L, Brun M. A class of auxetic three-dimensional lattices. J Mech Phys Solids. 2016;91:56–72.
  • Carta G, Cabras L, Brun M. Continuous and discrete microstructured materials with null Poisson’s ratio. J Eur Ceram Soc. 2016;36:2183–2192.
  • Shaat M, Wagih A. Hinged-3D metamaterials with giant and strain-independent Poisson’s ratios. Sci Rep. 2020;10:2228.
  • Pham MS, Liu C, Todd I, et al. Damage-tolerant architected materials inspired by crystal microstructure. Nature. 2019;565:305–311.
  • Ronellenfitsch H, Stoop N, Yu J, et al. Inverse design of discrete mechanical metamaterials. Phys Rev Mater. 2019;3:095201.
  • Kulagin R, Beygelzimer Y, Estrin Y, et al. Architectured lattice materials with tuneable anisotropy: design and analysis of the material property space with the aid of machine learning. Adv Eng Mater. 2020;22:2001069.
  • Bellman RE. Adaptive control processes: a guided tour. New Jersey: Princeton University Press; 1961.
  • Nilsson NJ. Principles of artificial intelligence. Berlin: Morgan Kaufmann; 2014.
  • Huber N. Connections between topology and macroscopic mechanical properties of three-dimensional open-pore materials. Front Mater. 2018;5:69.
  • Xia X, Afshar A, Yang H, et al. Electrochemically reconfigurable architected materials. Nature. 2019;573:205–213.
  • Masic M, Skelton RE, Gill PE. Algebraic tensegrity form-finding. Int J Solids Struct. 2005;42:4833–4858.
  • Beloshenko VA, Varyukhin VN, Voznyak YV. The shape memory effect in polymers. Russ Chem Rev. 2005;74(3):265–283.
  • Pasini D, Guest J. Imperfect architected materials: mechanics and topology optimization. MRS Bull. 2019;44(10):766–772.
  • Milton GW, Cherkaev AV. Which elasticity tensors are realizable? ASME J Eng Mater Technol. 1995;117(4):483–493.
  • Sigmund O. Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct. 1994;31:2313–2329.
  • Mao Y, He Q, Zhao X. Designing complex architectured materials with generative adversarial networks. Sci Adv. 2020;6:4169.
  • Xue T, Wallin TJ, Menguc Y, et al. Machine learning generative models for automatic design of multi-material 3D printed composite solids. Extr Mech Lett. 2020;41:100992.
  • Cadman JE, Zhou S, Chen Y, et al. On design of multi-functional microstructural materials. J Mater Sci. 2013;48:51–66.
  • Glass CW, Oganov AR, Hansen N. USPEX—evolutionary crystal structure prediction. Comp Phys Comm. 2006;175:713–720.
  • Garcia-Santiago X, Burger S, Rockstuhl C, et al. Bayesian optimization with improved scalability and derivative information for efficient design of nanophotonic structures. J Light Technol. 2021;39:167.
  • Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids. 1963;11:127–140.
  • Wadley HNG. Multifunctional periodic cellular metals. Phil Trans R Soc A. 2006;364:31–68.
  • Khoda B, Ahsan AMMN, Shovon AN, et al. 3D metal lattice structure manufacturing with continuous rods. Sci Rep. 2021;11:434.
  • Eder M, Amini S, Fratzl P. Biological composites-complex structures for functional diversity. Science. 2018;362:543–547.
  • Fratzl P. Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Interface. 2007;4(15):637–642.
  • Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52(8):1263–1334.
  • Harrington MJ, Fratzl P. Natural load-bearing protein materials. Prog Mater Sci. 2021;120:100767.
  • Liu KS, Jiang L. Bio-inspired design of multiscale structures for function integration. Nano Today. 2011;6(2):155–175.
  • Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Adv Mater. 2008;20(15):2842–2858.
  • Yang XY, Chen LH, Li Y, et al. Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev. 2017;46(2):481–558.
  • Yao HB, Fang HY, Wang XH, et al. Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chem Soc Rev. 2011;40(7):3764–3785.
  • Barthelat F, Yin Z, Buehler MJ. Structure and mechanics of interfaces in biological materials. Nature Rev Mater. 2016;1:16007.
  • Dunlop JWC, Weinkamer R, Fratzl P. Artful interfaces within biological materials. Mater Today. 2011;14(3):70–78.
  • Fratzl P, Kolednik O, Fischer FD, et al. The mechanics of tessellations – bioinspired strategies for fracture resistance. Chem Soc Rev. 2016;45(2):252–267.
  • Dunlop JWC, Fratzl P. Biological composites. Ann Rev Mater Res. 2010;40:1–24.
  • Estroff LA, Hamilton AD. At the interface of organic and inorganic chemistry: bioinspired synthesis of composite materials. Chem Mater. 2001;13(10):3227–3235.
  • Nudelman F, Sommerdijk N. Biomineralization as an inspiration for materials chemistry. Angewandte Chem Inter Edition. 2012;51(27):6582–6596.
  • Sanchez C, Julian B, Belleville P, et al. Applications of hybrid organic-inorganic nanocomposites. J Mater Chem. 2005;15(35-36):3559–3592.
  • Studart AR. Towards high-performance bioinspired composites. Adv Mater. 2012;24(37):5024–5044.
  • Foerster S, Antonietti M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater. 1998;10(3):195–217.
  • Wegst UGK, Bai H, Saiz E, et al. Bioinspired structural materials. Nature Mater. 2015;14(1):23–36.
  • Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nature Mater. 2014;13(5):508–514.
  • Ritchie RO. The conflicts between strength and toughness. Nature Mater. 2011;10(11):817–822.
  • Speck T, Burgert I. Plant stems: functional design and mechanics. Annu Rev Mater Res. 2011;41:169–193.
  • Plessis A, Broeckhoven C, Yadroitsava I, et al. Beautiful and functional: a review of biomimetic design in additive manufacturing. Addit Manuf. 2019;27:408–427.
  • Bhushan B, Jung YC. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci. 2011;56(1):1–108.
  • Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci. 2009;54(2):137–178.
  • Liu MJ, Wang ST, Jiang L. Nature-inspired superwettability systems. Nature Rev Mater. 2017;2:17036.
  • Yao X, Song YL, Jiang L. Applications of bio-inspired special wettable surfaces. Adv Mater. 2011;23(6):719–734.
  • Wang B, Liang WX, Guo ZG, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev. 2015;44(1):336–361.
  • Wong TS, Kang SH, Tang SKY, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011;477(7365):443–447.
  • Kreder MJ, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery? Nature Rev Mater. 2016;1:15003.
  • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–198.
  • Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomater. 2003;24(24):4353–4364.
  • Tadepalli S, Slocik JM, Gupta MK, et al. Bio-optics and bio-inspired optical mater. Chem Rev. 2017;117(20):12705–12763.
  • Zhao YJ, Xie ZY, Gu HC, et al. Bio-inspired variable structural color materials. Chem Soc Rev. 2012;41(8):3297–3317.
  • Gur D, Palmer BA, Weiner S, et al. Light manipulation by guanine crystals in organisms: biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv Funct Mater. 2017;27:1603514.
  • Stefik M, Guldin S, Vignolini S, et al. Block copolymer self-assembly for nanophotonics. Chem Soc Rev. 2015;44(15):5076–5091.
  • Liu YQ, He K, Chen G, et al. Nature-inspired structural materials for flexible electronic devices. Chem Rev. 2017;117(20):12893–12941.
  • Sangwan VK, Hersam MC. Neuromorphic nanoelectronic materials. Nature Nanotech. 2020;15(7):517–528.
  • Jeon SJ, Hauser AW, Hayward RC. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc Chem Res. 2017;50(2):161–169.
  • Mazzolai B, Tramacere F, Fiorello I, et al. The bio-engineering approach for plant investigations and growing robots. A mini-review. Front Robot AI. 2020;7:130.
  • Ionov L. Soft microorigami: self-folding polymer films. Soft Matter. 2011;7(15):6786–6791.
  • Fratzl P, Barth FG. Biomaterial systems for mechanosensing and actuation. Nature. 2009;462(7272):442–448.
  • Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot. 2016;1:3690.
  • Cianchetti M, Laschi C, Menciassi A, et al. Biomedical applications of soft robotics. Nature Rev Mater. 2018;3(6):143–153.
  • Palagi S, Fischer P. Bioinspired microrobots. Nature Rev Mater. 2018;3(6):113–124.
  • Harrington MJ, Speck O, Speck T, et al. Biological archetypes for self-healing materials. In: Hager M, van der Zwaag S, Schubert U, editors. Self-healing materials. Advances in polymer science. Cham, Switzerland: Springer; 2015. p. 307–344.
  • Sedo J, Saiz-Poseu J, Busque F, et al. Catechol-based biomimetic functional materials. Adv Mater. 2013;25(5):653–701.
  • Wu DY, Meure S, Solomon D. Self-healing polymeric materials: a review of recent developments. Prog Polym Sci. 2008;33(5):479–522.
  • Merindol R, Walther A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem Soc Rev. 2017;46(18):5588–5619.
  • Beygelzimer Y, Kulagin R, Fratzl P, et al. Earth’s lithosphere inspires materials design. Adv Mater. 2021;33:2005473.
  • Fossen H. Structural geology. Cambridge: Cambridge University Press; 2010.
  • Available from: http://myweb.facstaff.wwu.edu/~talbot/cdgeol/Localities/Switzerland.html
  • Rice JR. The localization of plastic deformation. In: WT Koiter, editor. Theoretical and applied mechanics. Amsterdam: North-Holland Publishing Co; 1976. p. 207–220.
  • Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33–39.
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61:782–817.
  • Nadai AL. Theory of flow and fracture of solids. New York: McGraw-Hill; 1963.
  • Ziegler H. An introduction to thermomechanics. Amsterdam: Elsevier North-Holland; 1983.
  • Höppel HW, May J, Göken M. Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv Eng Mat. 2004;6:781–784.
  • Bazarnik P, Bartkowska A, Romelczyk-Baishya B, et al. Superior strength of tri-layered Al-Cu-Al nano-composites processed by high-pressure torsion. J Alloys Comp. 2020;846:156380.
  • Estrin Y, Beygelzimer Y, Kulagin R. Design of architectured materials based on mechanically-driven structural and compositional patterning. Adv Eng Mater. 2019;21:1900487.
  • Rogachev SO, Nikulin SA, Khatkevich VM, et al. Structure formation and hardening of the hybrid material based on vanadium and zirconium alloys during high-pressure torsion. Rus Metall. 2018;4:372–376.
  • Han JK, Herndon T, Jang J, et al. Synthesis of hybrid nanocrystalline alloys by mechanical bonding through high-pressure torsion. Adv Eng Mater. 2020;22:1901289.
  • Beygelzimer Y, Kulagin R, Estrin Y. Severe plastic deformation as a way to produce architectured materials. In: Estrin Y, Bréchet Y, Dunlop J, et al., editors. Architectured materials in nature and engineering. Cham, Switzerland: Springer Nature; 2019. p. 231–255.
  • Kulagin R, Beygelzimer Y, Bachmaier A, et al. Benefits of pattern formation by severe plastic deformation. App Mater Today. 2019;15:236–241.
  • Kulagin R, Beygelzimer Y, Ivanisenko Y, et al. Instabilities of interfaces between dissimilar metals induced by high pressure torsion. Mater Lett. 2018;222:172–175.
  • Pouryazdan M, Kaus BJP, Rack A, et al. Mixing instabilities during shearing of metals. Nat Commun. 2017;8:1611.
  • Kulagin R, Beygelzimer Y, Ivanisenko Y, et al. Modelling of high pressure torsion using FEM. Proced Eng. 2017;207:1445–1450.
  • Kulagin R, Beygelzimer Y, Ivanisenko Y, et al. High pressure torsion: from laminar flow to turbulence. IOP Conf Series Mater Sci Eng. 2017;194:012045.
  • Cao Y, Wang YB, Figueiredo RB, et al. Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Mater. 2011;59:3903–3914.
  • Unterlass MM. Geomimetics and extreme biomimetics inspired by hydrothermal systems—what can we learn from nature for materials synthesis? Biomim. 2017;2(2):8.
  • Bouaziz O. Geometrically induced strain hardening. Scr Mater. 2013;68:28–30.
  • Beygelzimer Y, Estrin Y, Kulagin R. Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing. Adv Eng Mater. 2015;17:1853–1861.
  • Cherepanov GP. Fracture mechanics of composite materials. Moscow: Nauka; 1983. Russian.
  • Fitzgerald AE, Kingsley Jr C, Umans SD. Electric machinery. New York: McGraw-Hill; 2003.
  • Brechet Y, Embury JD. Architectured materials: expanding materials space. Scr Mater. 2013;68:1–3.
  • Fujioka T, Horita Z. Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater Trans. 2009;50:930–933.
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112:14501–14505.
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–30.
  • Zhu YT, Wu XL. Perspective on heterogeneous deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398.
  • Ma XL, Huang CX, Moering J, et al. Mechanical properties in copper/bronze laminates: role of interfaces. Acta Mat. 2016;116:43–52.
  • Huang CX, Wang YF, Ma XL, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater Today. 2018;17:713–719.
  • Zhou H, Huang CX, Sha XC, et al. In-situ observation of dislocation dynamics near heterostructured interfaces. Mater Res Lett. 2019;7:376–382.
  • Wu XL, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2:185–191.
  • Wu XL, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111:7197–7201.
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532.
  • Yang MX, Li RG, Jiang P, et al. Residual stress provides significant strengthening and ductility in gradient structured materials. Mater Res Lett. 2019;7:433–438.
  • Beyerlein IJ, Mayeur JR, Zheng SJ, et al. Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci USA. 2014;111:4386–4390.
  • Nix WD. Mechanical-Properties of thin-films. Metall Trans A Phys Metall Mater Sci. 1989;20:2217–2245.
  • Barnett SA, Shinn M. Plastic and elastic properties of compositionally modulated thin-films. Ann Rev Mater Sci. 1994;24:481–511.
  • Anderson PM, Foecke T, Hazzledine PM. Dislocation-based deformation mechanisms in metallic nanolaminates. Mrs Bull. 1999;24:27–33.
  • Schwaiger R, Kraft O. High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scr Mater. 1999;41:823–829.
  • Wang YC, Misra A, Hoagland RG. Fatigue properties of nanoscale Cu/Nb multilayers. Scripta Mater. 2006;54:1593–1598.
  • Misra A. Mechanical behavior of metallic nanolaminates. In: Hannink RH, Hill AJ, editors. Nanostructure control of materials. Cambridge: Woodhead; 2006. p. 146–176.
  • Carpenter JS, Misra A, Uchic MD, et al. Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression. Appl Phys Lett. 2012;101:051901.
  • Carpenter JS, Misra A, Anderson PM. Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness. Acta Mater. 2012;60:2625–2636.
  • Carpenter JS, Vogel SC, LeDonne JE, et al. Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding. Acta Mater. 2012;60:1576–1586.
  • Wang J, Kang K, Zhang RF, et al. Structure and property of interfaces in ARB Cu/Nb laminated composites. Jom. 2012;64:1208–1217.
  • Gram MD, Carpenter JS, Payzant EA, et al. X-ray diffraction studies of forward and reverse plastic flow in nanoscale layers during thermal cycling. Mater Res Lett. 2013;1:233–243.
  • Carpenter JS, Zheng SJ, Zhang RF, et al. Thermal stability of Cu-Nb nanolamellar composites fabricated via accumulative roll bonding. Philos Mag. 2013;93:718–735.
  • Zheng SJ, Beyerlein IJ, Carpenter JS, et al. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun. 2013;4:1696.
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345:1455–1456.
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590.
  • Chen AY, Liu JB, Wang HT, et al. Gradient twinned 304 stainless steels for high strength and high ductility. Mater Sci Eng A. 2016;667:179–188.
  • Wei YJ, Li YQ, Zhu LC, et al. Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature Comm. 2014;5:1–8.
  • Sawangrat C, Kato S, Orlov D, et al. Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders. J Mater Sci. 2014;49:6579–6585.
  • Zhang Z, Vajpai SK, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater Sci Eng A. 2014;598:106–113.
  • Vajpai SK, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution. Metall Mater Trans A. 2015;46:903–914.
  • Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59:658–670.
  • Li ZM, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227.
  • Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater Sci Eng A. 2014;604:135–141.
  • Wang YM, Chen MW, Zhou FH, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915.
  • Han BQ, Huang JY, Zhu YT, et al. Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys. Acta Mater. 2006;54:3015–3024.
  • Han BQ, Lee Z, Witkin D, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys. Metall Mater Trans A. 2005;36a:957–965.
  • Zhao YH, Topping T, Bingert JF, et al. High tensile ductility and strength in bulk nanostructured nickel. Adv Mater. 2008;20:3028–3033.
  • Wang YF, Huang CX, Li YS, et al. Dense dispersed shear bands in gradient-structured Ni. Int J Plast. 2020;124:186–198.
  • Yuan FP, Yan DS, Sun JD, et al. Ductility by shear band delocalization in the nano-layer of gradient structure. Mater Res Lett. 2019;7:12–17.
  • Wang YF, Huang CX, He Q, et al. Heterostructure induced dispersive shear bands in heterostructured Cu. Scr Mater. 2019;170:76–80.
  • Birringer R, Gleiter H, Klein HP, et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Phys Lett A. 1984;102:365–369.
  • Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33:223–315.
  • Jing J, Kramer A, Birringer R, et al. Modified atomic-strucure in a Pd-Fe-Si nanoglass – a Mössbauer study. J Non Cryst Solids. 1989;113:167–170.
  • Furche F, Ahlrichs R, Weis P, et al. The structures of small gold clusters as determined by a combination of ion mobility measurements and density functional calculations. J Chem Phys. 2002;117:6982–6990.
  • Schooss D, Blom MN, Parks JH, et al. The structures of Ag-55 (+) and Ag-55 (-): trapped ion electron diffraction and density functional theory. Nano Lett. 2005;10:1972–1977.
  • Gruene P, Rayner DM, Redlich B, et al. Structures of neutral Au-7, Au-19 and Au-20 clusters in the gas phase. Science. 2008;321:674–676.
  • Rapps T, Ahlrichs R, Waldt E, et al. On the structures of 55-atom transition-metal clusters and their relationship to the crystalline bulk. Angewandte Chemie Internat Ed. 2013;52:6102–6105.
  • Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2012;117:8208–8271.
  • Fuhr O, Dehnen S, Fenske D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem Soc Rev. 2013;42:1871–1906.
  • Neumaier M, Baksi A, Weis P, et al. Kinetics of intercluster reactions between atomically precise noble metal clusters [Ag25(DMBT)18]− and [Au25(PET)18]− in room temperature solutions. J Am Chem Soc. 2021;143:6969–6980.
  • Gleiter H, Schimmel T, Hahn H. Nanostructured solids – from nanoglasses to quantum transistors. Nano Today. 2014;9:17–68.
  • Ivanisenko Y, Kübel C, Nandam SH, et al. Structure and properties of nanoglasses. Adv Eng Mater. 2018;20(12):1800404.
  • Ulas S, Bundschuh S, Jester SS, et al. Mechanical properties of C58 materials and their dependence on thermal treatment. Carbon N Y. 2014;68:125–137.
  • Ghosh D, Ganayee MA, Som A, et al. Hierarchical assembly of atomically precise metal clusters as a luminescent strain sensor. ACS Appl Mater Interfaces. 2021;13:6496–6504.
  • Fischer A, Kruk R, Hahn H. A versatile apparatus for the fine-tuned synthesis of cluster-based materials. Rev Sci Instrum. 2015;86:023304.
  • Fischer A, Kruk R, Wang D, et al. Magnetic properties of iron cluster/chromium matrix nanocomposites. Beilstein J Nanotechnol. 2015;6:1158–1163.
  • Gack N, Iankevich G, Benel C, et al. Magnetotransport properties of ferromagnetic nanoparticles in a semiconductor matrix studied by precise size-selective cluster ion beam deposition. Nanomaterials. 2020;10:2192.
  • Benel C, Reisinger T, Kruk R, et al. Cluster-assembled nanocomposites: functional properties by design. Adv Mater. 2018;31(26):1806634.
  • Benel C, Fischer A, Zimina A, et al. Controlling the structure and magnetic properties of cluster-assembled metallic glasses. Mater Horiz. 2019;6:727–732.