2,464
Views
4
CrossRef citations to date
0
Altmetric
Original Report

Coherent precipitation and stability of cuboidal B2 nanoparticles in a ferritic Fe–Cr–Ni–Al superalloy

, , , , , & show all
Pages 458-466 | Received 10 Jun 2021, Published online: 09 Sep 2021

References

  • Pesicka J, Kuzel R, Dronhofer A, et al. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater. 2003;51:4847–4862.
  • Kostka A, Tak KG, Hellmig RJ, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater. 2007;55:539–550.
  • Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater. 2009;57:5093–5106.
  • Xu YT, Li W, Wang MJ, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging. Acta Mater. 2019;175:148–159.
  • Niu B, Wang ZH, Wang Q, et al. Dual-phase synergetic precipitation in Nb/Ta/Zr co-modified Fe–Cr–Al–Mo alloy. Intermetallics. 2020;124:106848.
  • Reed RC. The superalloys: fundamentals and applications. Cambridge: Cambridge University Press; 2008.
  • Pollock TM, Argon AS. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall Mater. 1992;40:1–30.
  • Zhang JX, Harada H, Koizumi Y, et al. Dislocation motion in the early stages of high-temperature low-stress creep in a single-crystal superalloy with a small lattice misfit. J Mater Sci. 2010;45:523–532.
  • Teng ZK, Ghosh G, Miller MK, et al. Neutron-diffraction study and modeling of the lattice parameters of a NiAl-precipitate-strengthened Fe-based alloy. Acta Mater. 2012;60:5362–5369.
  • Teng ZK, Miller MK, Ghosh G, et al. Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography. Scripta Mater. 2010;63:61–64.
  • Song G, Sun ZQ, Poplawsky JD, et al. Microstructural evolution of single Ni2TiAl or hierarchical NiAl/Ni2TiAl precipitates in Fe–Ni–Al–Cr–Ti ferritic alloys during thermal treatment for elevated-temperature applications. Acta Mater. 2017;127:1–16.
  • Song G, Hong SJ, Lee JK, et al. Optimization of B2/L21 hierarchical precipitate structure to improve creep resistance of a ferritic Fe–Ni–Al–Cr–Ti superalloy via thermal treatments. Scripta Mater. 2019;161:18–22.
  • Song G, Sun Z, Li L, et al. Ferritic alloys with extreme creep resistance via coherent hierarchical precipitates. Sci Rep. 2015;5:16327.
  • Kohyama A, Hishinuma A, Gelles DS, et al. Low-activation ferritic and martensitic steels for fusion application. J Nucl Mater. 1996;233-277:138–147.
  • Wang Q, Ma Y, Jiang BB, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scripta Mater. 2016;120:85–89.
  • Ma Y, Wang Q, Jiang BB, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater 2018;147:213–225.
  • Wang Q, Han JC, Liu YF, et al. Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0.4Nb0.5Ta0.5TiZr0.8 refractory high entropy alloy. Scripta Mater. 2021;190:40–45.
  • Thompson M, Su C, Voorhees PW. The equilibrium shape of a misfitting precipitate. Acta Metall Mater. 1994;42(6):2107–2122.
  • Yamamoto Y, Brady MP, Lu ZP, et al. Creep-resistant, Al2O3-forming austenitic stainless steels. Science. 2007;316:433–436.
  • Wang WR, Wang WL, Yeh JW. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd. 2014;589:143–152.
  • Chen RR, Qin G, Zheng HT, et al. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 2018;144:129–137.
  • Bhadeshia H, Honeycombe R. Steels-microstructure and properties. Oxford: Butterworth Heinemann; 2017.
  • Calderon HA, Fine ME, Weertman JR. Coarsening and morphology of particles in Fe–Ni–Al–Mo ferritic alloys. Metall Trans A. 1987;19:1135–1146.
  • Vo NQ, Liebscher CH, Rawlings MJS, et al. Creep properties and microstructure of a precipitation-strengthened ferritic Fe–Al–Ni–Cr alloy. Acta Mater. 2014;71:89–99.
  • Briant CL, Banerji SK. Intergranular failure in steel: the role of grain boundary composition. Int Metal Rev. 1978;23:164–199.
  • Baker I, Munroe PR. Improving intermetallic ductility and toughness. JOM. 1988;40:2.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675.
  • Shackelford JF, Han YH. Kim S, et al. CRC Materials science and engineering handbook. Boca Raton (FL): CRC Press; 2016.
  • Hosford WF. Mechanical behavior of materials. New York (NY): Cambridge University Press; 2005.
  • Sun ZQ, Song G, Ilavsky J, et al. Duplex precipitates and their effects on the room-temperature fracture behavior of a NiAl-strengthened ferritic alloy. Mater Res Lett. 2015;3:128–134.
  • Baik SI, Wang SY, Liaw PK, et al. Increasing the creep resistance of Fe–Ni–Al–Cr superalloys via Ti additions by optimizing the B2/L21 ratio in composite nanoprecipitates. Acta Mater. 2018;157:142–154.
  • Philippe T, Voorhees PW. Ostwald ripening in multicomponent alloys. Acta Mater. 2013;61:4237–4244.
  • Orthacker A, Haberfehlner A, Taendl J, et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates. Nat Mater. 2018;17:1101–1107.
  • Spigarelli S, Cerri E, Bianchi P, et al. Interpretation of creep behaviour of a 9Cr–Mo–Nb–V–N (T91) steel using threshold stress concept. Mater Sci Tech. 1999;15:1433.
  • Voorhees PW, McFadden GB, Johnson WC. On the morphological development of second-phase particles in elastically-stressed solids. Acta Metall. 1992;40:2979–2992.
  • Su CH, Voorhees PW. The dynamics of precipitate evolution in elastically stressed solids—II. Particle alignment. Acta Mater. 1996;44:2001–2006.
  • Thompson M, Su C, Voorhees PW. The equilibrium shape of a misfitting precipitate. Acta Metall Mater. 1994;42(6):2107–2122.
  • Wasilewski RJ. Elastic constants and young's modulus of NiAl. Trans Mct Soc AIME. 1966;236:455.
  • Argon A. Strengthening mechanisms in crystal plasticity. Oxford: Oxford University Press; 2007.
  • Zhao YX, Fang QH, Liu YW, et al. Creep behavior as dislocation climb over NiAl nanoprecipitates in ferritic alloy: The effects of interface stresses and temperature. Int J Plast. 2015;69:89–101.
  • Ghosh G, Olson GB. The isotropic shear modulus of multicomponent Fe-base solid solutions. Acta Mater. 2002;50:2655–2675.
  • Rawlings MJS, Liebscher CH, Asta M, et al. Effect of titanium additions upon microstructure and properties of precipitation-strengthened Fe–Ni–Al–Cr ferritic alloys. Acta Mater. 2017;128:103–112.
  • Krug ME, Seidman DN, Dunand DC. Creep properties and precipitate evolution in Al-Li alloys microalloyed with Sc and Yb. Mater Sci Eng A. 2012;550:300–311.
  • Song G, Sun ZQ, Clausen B, et al. Microstructural characteristics of a Ni2TiAl-precipitate-strengthened ferritic alloy. J Alloys Compd. 2017;693:921–928.
  • Polvani RS, Tzeng WS, Strutt PR. High temperature creep in a semicoherent NiAl-Ni2AlTi alloy. Metall Trans A. 1973;7A:33–40.