1,000
Views
3
CrossRef citations to date
0
Altmetric
Original Report

Tailoring morphology in titania nanotube arrays by implantation: experiments and modelling on designed pore size—and beyond

ORCID Icon, &
Pages 483-489 | Received 15 Jun 2021, Published online: 18 Sep 2021

References

  • Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed. 2011;50:2904–2939.
  • Regonini D, Bowen CR, Jaroenworaluck A, et al. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R. 2013;74:377–406.
  • Sopha H, Tesar K, Knotek P, et al. TiO2 nanotubes grown on Ti substrates with different microstructure. Mater Res Bull. 2018;103:197–204.
  • Fischer K, Mayr SG. In-plane mechanical response of TiO2 nanotube arrays – intrinsic properties and impact of adsorbates for sensor applications. Adv Mater. 2011;23:3838–3841.
  • Roguska A, Belcarz A, Zalewska J, et al. Metal TiO2 nanotube layers for the treatment of dental implant infections. ACS Appl Mater Interfaces. 2018;10:17089–17099.
  • Kallendrusch S, Merz F, Bechmann I, et al. Long-term tissue culture of adult brain and spleen slices on nanostructured scaffolds. Adv Healthcare Mater. 2017;6:1601336.
  • Mayazur Rahman S, Reichenbach A, Zink M, et al. Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds. Soft Matter. 2016;12:3431–3441.
  • Dallacasagrande V, Zink M, Huth S, et al. Tailoring substrates for long-term organotypic culture of adult neuronal tissue. Adv Mater. 2012;24:2399–2403.
  • Paramasivam I, Jha H, Liu N, et al. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small. 2012;8:3073–3103.
  • Cho IS, Choi J, Zhang K, et al. Highly efficient solar water splitting from transferred TiO2 nanotube arrays. Nano Lett. 2015;15:5709–5715.
  • Chen B, Hou J, Lu K. Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir. 2013;29:5911–5919.
  • Zhou X, Häublein V, Liu N, et al. TiO2 nanotubes: nitrogen-ion implantation at low dose provides noble-metal-free photocatalytic H2 – evolution activity. Angew Chem Int Ed. 2016;55:3763–3767.
  • Chatzitakis A, Grandcolas M, Xu K, et al. Assessing the photoelectrochemical properties of C, N, F codoped TiO2 nanotubes of different lengths. Catal Today. 2017;287:161–168.
  • Liu N, Häublein V, Zhou X, et al. “Black” TiO2 nanotubes formed by high-energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett. 2015;15:6815–6820.
  • Ghicov A, Macak JM, Tsuchiya H, et al. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett. 2006;6:1080–1082.
  • Ghicov A, Macak JM, Tsuchiya H, et al. TiO2 nanotube layers: dose effects during nitrogen doping by ion implantation. Chem Phys Lett. 2006;419:426–429.
  • Panepinto A, Cossement D, Snyders R. Experimental and theoretical study of the synthesis of N-doped TiO2 by N ion implantation of TiO2 thin films. Appl Surf Sci. 2021;541:148493.
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682.
  • Matsui M, Akaogi M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol Simul. 1991;6(4-6):239–244.
  • Wolf D, Keblinski P, Phillpot SR, et al. Exact method for the simulation of coulombic systems by spherically truncated, pairwise r−1 summation. J Chem Phys 1999;110(17):8254–8282.
  • Gear CW. Numerical initial value problems in ordinary differential equations. Prentice-Hall Series in Automatic Computation; 1971.
  • Mayr SG. Activation energy of shear transformation zones: a key for understanding rheology of glasses and liquids. Phys Rev Lett. 2006;97(19):195501.
  • Borschel C, Ronning C. Ion beam irradiation of nanostructures – a new 3D Monte Carlo simulation code. Nucl Instr Meth Phys Res B. 2011;269:2133.
  • Kupferer A, Holm A, Lotnyk A, et al. Compositional patterning in carbon implanted Titania nanotubes. Adv Funct Mater. 2021;31:2104250.
  • Mayr SG, Ashkenazy Y, Albe K, et al. Mechanisms of radiation-induced viscous flow: role of point defects. Phys Rev Lett. 2003;90:55505.
  • Scherer GW, Garino T. Viscous sintering on a rigid substrate. J Am Ceram Soc. 1985;68:216–220.
  • Asaro RJ, Tiller WA. Interface morphology development during stress corrosion cracking. Part I. Via surface diffusion. Metall Mater Trans B. 1972;3(7):1789–1796.
  • Grinfeld MA. Instability of the interface between a nonhydrostatically stressed elastic body and a melt. Dokl Akad Nauk. 1986;290:1358–1363.
  • Srolovitz DJ. On the stability of surfaces of stressed solids. Acta Metall. 1989;37(2):621–625.
  • Vauth S, Mayr SG. Relevance of surface viscous flow, surface diffusion, and ballistic effects in keV ion smoothing of amorphous surfaces. Phys Rev B. 2007;75:22.