2,274
Views
4
CrossRef citations to date
0
Altmetric
Original Report

Double transition metal-containing M2TiAlC2o-MAX phases as Li-ion batteries anodes: a theoretical screening

, ORCID Icon &
Pages 516-522 | Received 03 Jul 2021, Published online: 14 Oct 2021

References

  • Barsoum MW. MAX phases: properties of machinable ternary carbides and nitrides. Weinheim: Wiley-VCH; 2013.
  • Barsoum M. The MN+1AXN phases. A new class of solids; thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28:28–201.
  • Naguib M, Bentzel GW, Shah J, et al. New solid solution MAX phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC. Mater Res Lett. 2014;2(4):233–240.
  • Sokol M, Natu V, Kota S, et al. On the chemical diversity of the MAX phases. Trends in Chemistry. 2019;1(2):210–223.
  • Xu J, Qiu N, Huang Q, et al. Theoretical investigations on structural and thermo-mechanical properties of layered ternary carbide Th–Al–C systems. J Nucl Mater. 2020;540:152358.
  • Hajas DE, to Baben M, Hallstedt B, et al. Oxidation of Cr2AlC coatings in the temperature range of 1230 to 1410°C. Surf Coat Technol. 2011;206(4):591–598.
  • Tallman DJ, Hoffman EN, EaN C, et al. Effect of neutron irradiation on select MAX phases. Acta Mater. 2015;85:132–143.
  • Lane NJ, Vogel SC, EaN C, et al. High-temperature neutron diffraction and first-principles study of temperature-dependent crystal structures and atomic vibrations in Ti3AlC2, Ti2AlC, and Ti5Al2C3. J Appl Phys. 2013;113(18):183519.
  • Li Y, Shao H, Lin Z, et al. Author correction: a general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2021;20(4):571–571.
  • Zhang X, Zhang Z, Zhou Z. MXene-based materials for electrochemical energy storage. J Energy Chem. 2018 Jan;27(1):73–85.
  • Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc. 2012;134(40):16909–16916.
  • Miao N, Wang J, Gong Y, et al. Computational prediction of boron-based MAX phases and MXene derivatives. Chem Mater. 2020;32(16):6947–6957.
  • Barmann P, Haneke L, Wrogemann JM, et al. Scalable synthesis of MAX phase precursors toward titanium-based MXenes for lithium-ion batteries. ACS Appl Mater Interfaces. 2021;13(22):26074–26083.
  • Xu J, Zhao M-Q, Wang Y, et al. Demonstration of Li-ion capacity of MAX phases. ACS Energy Lett. 2016;1(6):1094–1099.
  • Zhao S, Dall’Agnese Y, Chu X, et al. Electrochemical interaction of Sn-containing MAX phase (Nb2SnC) with Li-ions. ACS Energy Letters. 2019;4(10):2452–2457.
  • Wu H, Zhu J, Liu L, et al. Intercalation and delamination of Ti2SnC with high lithium ion storage capacity. Nanoscale. 2021;13(15):7355–7361.
  • Li Y, Ma G, Shao H, et al. Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase. Nanomicro Lett. 2021;13(1):158.
  • Sun L, Xie J, Zhang L, et al. 2D black TiO2-x nanoplate-decorated Ti3C2 MXene hybrids for ultrafast and elevated stable lithium storage. FlatChem; 2020;20:100152.
  • Zhu G, Chen T, Wang L, et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Mater. 2018;14:246–252.
  • Chen T, Cheng B, Chen R, et al. Hierarchical ternary carbide nanoparticle/carbon nanotube-inserted N-doped carbon concave-polyhedrons for efficient lithium and sodium storage. ACS Appl Mater Interfaces. 2016;8(40):26834–26841.
  • Zhu J, Chroneos A, Wang L, et al. Stress-enhanced lithiation in MAX compounds for battery applications. Appl Mater Today. 2017;9:192–195.
  • Filippatos PP, Hadi MA, Christopoulos SRG, et al. 312 MAX phases: elastic properties and lithiation. Materials (Basel). 2019;12(24):4098.
  • Sun W, Shah SA, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A. 2017;5(41):21663–21668.
  • Tesfaye AT, Mashtalir O, Naguib M, et al. Anodized Ti3SiC2 As an anode material for Li-ion microbatteries. ACS Appl Mater Inter. 2016;8(26):16670–16676.
  • Chen X, Zhu Y, Zhu X, et al. Partially etched Ti3AlC2 as a promising high-capacity lithium-ion battery anode. ChemSusChem. 2018;11(16):2677–2680.
  • Khazaei M, Wang V, Sevik C, et al. Electronic structures of iMAX phases and their two-dimensional derivatives: a family of piezoelectric materials. Phys Rev Mater. 2018;2(7):074002.
  • Cover MF, Warschkow O, Bilek MMM, et al. A comprehensive survey of M2AX phase elastic properties. J Phys: Condens Matter. 2009;21(30):305403.
  • Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano. 2015;9(10):9507–9516.
  • Magnuson M, Mattesini M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films. 2017;621:108–130.
  • Sun Z, Music D, Ahuja R, et al. Bonding and classification of nanolayered ternary carbides. Phys Rev B. 2004;70(9):092102.
  • Bouhemadou A, Khenata R. Structural, electronic and elastic properties of M2SC (M = Ti, Zr, Hf) compounds. Phys Lett A. 2008;372(42):6448–6452.
  • Brown ID, Shannon RD. Empirical bond-strength–bond-length curves for oxides. Acta Crystallogr A. 1973;29(3):266–282.
  • Khazaei M, Arai M, Sasaki T, et al. Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. J Phys: Condens Matter. 2014;26(50):505503.
  • Zhang X, Yu Z, Wang S-S, et al. Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries. J Mater Chem A. 2016;4(39):15224–15231.
  • Wang D, Gao Y, Liu Y, et al. First-principles calculations of Ti2N and Ti2NT2 (T = O, F, OH) monolayers as potential anode materials for lithium-ion batteries and beyond. J Phys Chem C. 2017;121(24):13025–13034.