2,696
Views
9
CrossRef citations to date
0
Altmetric
Original Report

In situ characterization of tensile behavior of laser rapid solidified Al–Si heterogeneous microstructures

, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 507-515 | Received 19 Aug 2021, Published online: 12 Oct 2021

References

  • Hirsch J. Recent development in aluminium for automotive applications. Trans Nonferrous Met Soc China. 2014;24:1995–2002.
  • Aktarer SM, Sekban DM, Saray O, et al. Effect of two-pass friction stir processing on the microstructure and mechanical properties of as-cast binary Al–12Si alloy. Mater Sci Eng A. 2015;636:311–319.
  • Purcek G, Saray O, Kul O. Microstructural evolution and mechanical properties of severely deformed Al-12Si casting alloy by equal-channel angular extrusion. Met Mater Int. 2010;16:145–154.
  • Lien H-H, Mazumder J, Wang J, et al. Ultrahigh strength and plasticity in laser rapid solidified Al–Si nanoscale eutectics. Mater Res Lett. 2020;8:291–298.
  • Hosch T, Napolitano RE. The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys. Mater Sci Eng A. 2010;528:226–232.
  • Rao J, Zhang J, Liu R, et al. Modification of eutectic Si and the microstructure in an Al-7Si alloy with barium addition. Mater Sci Eng A. 2018;728:72–79.
  • Van Cauwenbergh P, Samaee V, Thijs L, et al. Unravelling the multi-scale structure–property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg. Sci Rep. 2021;1:6423.
  • Ma Z, Sharma S, Mishra R. Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metall Mater Trans A. 2006;37:3323–3336.
  • Wang QG. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall Mater Trans A. 2003;34:2887–2899.
  • Cáceres CH, Davidson CJ, Griffiths JR. The deformation and fracture behaviour of an Al-Si-Mg casting alloy. Mater Sci Eng A. 1995;197:171–179.
  • Li XP, Wang XJ, Saunders M, et al. A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 2015;95:74–82.
  • Liu M, Zheng R, Xiao W, et al. Bulk nanostructured Al-Si alloy with remarkable improvement in strength and ductility. Scripta Mater. 2021;201:113970.
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31.
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532.
  • Wu H, Fan G. An overview of tailoring strain delocalization for strength-ductility synergy. Prog Mater Sci. 2020;113:100675.
  • Jiang W, Fan Z, Dai Y, et al. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy. Mater Sci Eng A. 2014;597:237–244.
  • Lien H-H, Mazumder J, Wang J, et al. Microstructure evolution and high density of nanotwinned ultrafine Si in hypereutectic Al-Si alloy by laser surface remelting. Mater Charact. 2020;161:110147.
  • Ma Z, Zhao H, Huang H, et al. A novel tensile device for in situ scanning electron microscope mechanical testing. Exp Tech. 2015;39:3–11.
  • Sano T, Yu J, Davis B, et al. In-situ scanning electron microscopy comparison of microstructure and deformation between WE43-F and WE43-T5 magnesium alloys. In: Sillekens WH, Agnew SR, Neelameggham NR, et al., editors. Magnesium technology. Springer; 2011. p. 345–348. doi:https://doi.org/10.1007/978-3-319-48223-1_64.
  • Boehlert CJ, Cowen CJ, Tamirisakandala S, et al. In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti–6Al–4 V alloy. Scripta Mater. 2006;55:465–468.
  • Liu Y, Li N, Arul Kumar M, et al. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater. 2017;135:411–421.
  • Xu S, Xie D, Liu G, et al. Quantifying the resistance to dislocation glide in single phase FeCrAl alloy. Int J Plast. 2020;132:102770.
  • Pandee P, Gourlay CM, Belyakov SA, et al. Alsi2sc2 intermetallic formation in Al-7Si-0.3Mg-xSc alloys and their effects on as-cast properties. J Alloys Compd. 2018;731:1159–1170.
  • Xu C, Wang F, Mudassar H, et al. Effect of Sc and Sr on the eutectic Si morphology and tensile properties of Al-Si-Mg alloy. J Mater Eng Perform. 2017;26:1605–1613.
  • Zheng Q, Zhang L, Jiang H, et al. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys. J Mater Sci Technol. 2020;47:142–151.
  • Li Q, Qiu F, Dong B-X, et al. Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys. Mater Sci Eng A. 2020;798:140247.
  • Kang J, Su R, Wu DY, et al. Synergistic effects of Ce and Mg on the microstructure and tensile properties of Al-7Si-0.3Mg-0.2Fe alloy. J Alloys Compd. 2019;796:267–278.
  • Liu W, Xiao W, Xu C, et al. Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy. Mater Sci Eng A. 2017;693:93–100.
  • Lei W, Liu X, Wang W, et al. On the influences of Li on the microstructure and properties of hypoeutectic Al-7Si alloy. J Alloys Compd. 2017;729:703–709.
  • Dang B, Zhang X, Chen YZ, et al. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy. Sci Rep. 2016;6:30874.
  • Caceres CH, Griffiths JR, Reiner P. The influence of microstructure on the Bauschinger effect in an Al-Si-Mg casting alloy. Acta Mater. 1996;44:15–23.
  • Wang QG. Plastic deformation behavior of aluminum casting alloys A356/357. Metall Mater Trans A. 2004;35:2707–2718.
  • Wang J, Misra A. Strain hardening in nanolayered thin films. Curr Opin Solid State Mater. 2014;18:19–28.
  • Misra A, Hirth JP, Hoagland RG. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005;53:4817–4824.
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398.