2,693
Views
4
CrossRef citations to date
0
Altmetric
Original Report

Oxygen changes crack modes of Ni-based single crystal superalloy

, , , , , , , ORCID Icon, , , , , , , & show all
Pages 531-539 | Received 16 Jun 2021, Published online: 27 Oct 2021

References

  • Reed RC. The superalloys: fundamentals and applications. Cambridge: Cambridge University Press; 2008.
  • Donachie MJ, Donachie SJ. Superalloys: a technical guide. Ohio: ASM International; 2002.
  • Pollock TM. Alloy design for aircraft engines. Nat Mater. 2016;15:809–815.
  • Le Bihan Y, Joubert P-Y, Placko D. Wall thickness evaluation of single-crystal hollow blades by eddy current sensor. NDT&E Int. 2001;34:363–368.
  • Koff BL. Gas turbine technology evolution: a designers perspective. J Propuls Power. 2004;20:577–595.
  • Cassenti B, Staroselsky A. The effect of thickness on the creep response of thin-wall single crystal components. Mater Sci Eng A. 2009;508:183–189.
  • Hu Y, Zhang L, Cheng C, et al. Influence of specimen thickness on the creep behavior of a directional solidification nickel-based superalloy. Vacuum. 2018;150:105–115.
  • Wen Z, Pei H, Li D, et al. Thickness influence on the creep response of DD6 Ni-based single-crystal superalloy. High Temp Mater Process. 2016;35:871–880.
  • Wang XM, Liu H, Hui YZ, et al. Quantitative study of the microstructure evolution along the thickness direction in the nickel-based single crystal superalloy DD6 at 1323 K thermal exposure. Mater Charact. 2019;154:285–293.
  • Fournier L, Delafosse D, Magnin T. Oxidation induced intergranular cracking and Portevin-Le Chatelier effect in nickel base superalloy 718. Mater Sci Eng A. 2001;316:166–173.
  • Pei H, Wen Z, Yue Z. Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050 °C and 1100 °C in air. J Alloys Compd. 2017;704:218–226.
  • Ding Q, Shen Z, Xiang S, et al. In-situ environmental TEM study of γ-γ phase transformation induced by oxidation in a nickel-based single crystal superalloy. J Alloys Compd. 2015;651:255–258.
  • Long H, Wei H, Liu Y, et al. Effect of lattice misfit on the evolution of the dislocation structure in Ni-based single crystal superalloys during thermal exposure. Acta Mater. 2016;120:95–107.
  • Long H, Mao S, Liu Y, et al. Microstructural and compositional design of Ni-based single crystalline superalloys ― A review. J Alloys Compd. 2018;743:203–220.
  • Hemmersmeier U, Feller-Kniepmeier M. Element distribution in the macro- and microstructure of nickel base superalloy CMSX-4. Mater Sci Eng A. 1998;248:87–97.
  • Seetharaman S. Treatise on process metallurgy, volume 3: industrial processes. Amsterdam: Elsevier; 2013.
  • Zhang JS. High temperature deformation and fracture of materials. Sawston: Woodhead Publishing; 2010.
  • Edmonds IM, Evans HE, Jones CN. The role of the γ precipitate dispersion in forming a protective scale on Ni-based superalloys at 750°C. Oxid Met. 2010;73:193–206.
  • Sato A, Chiu YL, Reed RC. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications. Acta Mater. 2011;59:225–240.
  • Ma J, Jiang W, Wang J, et al. Initial oxidation behavior of a single crystal superalloy during stress at 1150°C. Sci Rep. 2020;10:1–9.
  • Hu Y, Cao T, Cheng C, et al. Oxidation behavior of a single-crystal Ni-based superalloy over the temperature range of 850°C–950°C in air. Appl Surf Sci. 2019;484:209–218.
  • Xiao J, Yang H, Liu H, et al. Strengthening-softening transition in yield strength of nanotwinned Cu. Scr Mater. 2019;162:372–376.
  • Ye X, Yang B, Nie Y, et al. Influence of Nb addition on the oxidation behavior of novel Ni-base superalloy. Corros Sci. 2021;185:109436.
  • Zhang J, Li Y, Li X, et al. Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten. Nat Commun. 2021;12:2218.
  • Cheng CQ, Hu YB, Cao TS, et al. Two typical oxidation models on nickel-based superalloys under different initial surface roughness. Corros Sci. 2020;176:108942.
  • Liu Y, Wu Y, Wang J, et al. Oxidation behavior and microstructure degeneration of cast Ni-based superalloy M951 at 900 °C. Appl Surf Sci. 2019;479:709–719.
  • Cruchley S, Evans H, Taylor M. An overview of the oxidation of Ni-based superalloys for turbine disc applications: surface condition, applied load and mechanical performance. Mater High Temp. 2016;33:465–475.
  • Zhu Q, Pan Z, Zhao Z, et al. Defect-driven selective metal oxidation at atomic scale. Nat Commun. 2021;12:1–8.
  • Zhai Y, Chen Y, Zhao Y, et al. Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: The interface junction initiated outwards oxidation. Acta Mater. 2021;215:116991.
  • Langelier B, Persaud SY, Korinek A, et al. Effects of boundary migration and pinning particles on intergranular oxidation revealed by 2D and 3D analytical electron microscopy. Acta Mater. 2017;131:280–295.
  • Sanviemvongsak T, Monceau D, Desgranges C, et al. Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing. Corros Sci. 2020;170:108684.
  • Neil B, Meier GH, Pettit FS. Introduction to the high temperature oxidation of metals. Cambridge: Cambridge University Press; 2006.
  • Ramsay JD, Evans HE, Child DJ, et al. The influence of stress on the oxidation of a Ni-based superalloy. Corros Sci. 2019;154:277–285.
  • Oleksak RP, Kapoor M, Perea DE, et al. The role of metal vacancies during high-temperature oxidation of alloys. NPJ Mater Degrad. 2018;2:1–8.
  • Evans AG, He MY, Suzuki A, et al. A mechanism governing oxidation-assisted low-cycle fatigue of superalloys. Acta Mater. 2009;10:2969–2983.