1,748
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Observation of dynamical transformation plasticity in metallic nanocomposites through a precompiled machine-learning algorithm

, , , , &
Pages 14-20 | Received 09 Aug 2021, Published online: 08 Jan 2022

References

  • So KP, Liu X, Mori H, et al. Ton-scale metal–carbon nanotube composite: The mechanism of strengthening while retaining tensile ductility. Extreme Mech Lett. 2016;8:245–250.
  • Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977;25(4):407–415.
  • Argon A. Plastic deformation in metallic glasses. Acta Metall. 1979;27(1):47–58.
  • Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E. 1998;57(6):7192.
  • Fessler JA. Optimization methods for magnetic resonance image reconstruction: Key models and optimization algorithms. IEEE Signal Process Mag. 2020;37(1):33–40.
  • Ravishankar S, Ye JC, Fessler JA. Image reconstruction: from sparsity to data-adaptive methods and machine learning. Proc IEEE. 2019;108(1):86–109.
  • Bezanson J, Karpinski S, Shah VB, et al. Julia: A fast dynamic language for technical computing. arXiv. 2012: 1209.5145.
  • Perkel JM. Julia: come for the syntax, stay for the speed. Nature. 2019;572(7768):141–143.
  • Bezanson J, Edelman A, Karpinski S, et al. Julia: A fresh approach to numerical computing. SIAM Rev. 2017;59(1):65–98.
  • Cao P, Short MP, Yip S. Potential energy landscape activations governing plastic flows in glass rheology. Proc Natl Acad Sci USA. 2019;116(38):18790–18797.
  • Poirier J. On transformation plasticity. J Geophys Res: Solid Earth. 1982;87(B8):6791–6797.
  • Julia code and TEM data repository. (2021). https://www.dropbox.com/sh/6q0j45dw8abjyee/AACS0QkWcOrLWABCoYEFpAQwa?dl=0.
  • Fessler JA. Michigan image reconstruction toolbox. Ann Arbor (MI): Jeffrey Fessler; 2018. https://web.eecs.umich.edu/∼fessler/code.
  • Danisch S, Krumbiegel J. Makie. jl: flexible high-performance data visualization for julia. J Open Source Softw. 2021;6(65):3349.
  • Ledig C, Theis L, Huszár F, et al., editors. Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.
  • Dong C, Loy CC, Tang X. Accelerating the super-resolution convolutional neural network. In: European conference on computer vision. Cham: Springer; 2016, October. pp. 391–407.
  • Kim J, Lee JK, Lee KM. editors. Accurate image super-resolution using very deep convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016.
  • Lim B, Son S, Kim H, et al. editors. Enhanced deep residual networks for single image super-resolution. Proceedings of the IEEE conference on computer vision and pattern recognition workshops; 2017.
  • Wen B, Li Y, Pfister L, et al. editors. Joint adaptive sparsity and low-rankness on the fly: an online tensor reconstruction scheme for video denoising. Proceedings of the IEEE international conference on computer vision; 2017.
  • Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):1289–1306.
  • Eldar YC, Kutyniok G. Compressed sensing: theory and applications. Cambridge university press; 2012.
  • Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;27:2672.
  • Poirier J. Creep of crystals. X: Cambridge University Press; Ch. 8; 2009.
  • Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55(12):4067–4109.
  • Demkowicz MJ, Argon AS. High-density liquid-like component facilitates plastic flow in a model amorphous silicon system. MRS Online Proceedings Library (OPL). 2003: 806.