2,500
Views
8
CrossRef citations to date
0
Altmetric
Original Reports

Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy

, , , , , , , , & show all
Pages 21-28 | Received 03 Oct 2021, Published online: 08 Jan 2022

Reference

  • Pollock TM. Weight loss with magnesium alloys. Science. 2010;328:986–987.
  • Kim NJ. Critical assessment 6: magnesium sheet alloys: viable alternatives to steels? Mater Sci Technol. 2014;30:1925–1928.
  • Cihova M, Schäublin R, Hauser LB, et al. Rational design of a lean magnesium-based alloy with high age-hardening response. Acta Mater. 2018;158:214–229.
  • Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys. Acta Mater. 2017;130:261–270.
  • Zheng R, Bhattacharjee T, Shibata A, et al. Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures. Scr Mater. 2017;131:1–5.
  • Razavi SM, Foley DC, Karaman I, et al. Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy. Scr Mater. 2012;67:439–442.
  • Zeng ZR, Zhu YM, Liu RL, et al. Achieving exceptionally high strength in Mg 3Al 1Zn-0.3Mn extrusions via suppressing intergranular deformation. Acta Mater. 2018;160:97–108.
  • Pan H, Qin G, Huang Y, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater. 2018;149:350–363.
  • Pan H, Xie D, Li J, et al. Development of novel lightweight and cost-effective Mg–Ce–Al wrought alloy with high strength. Mater Res Lett. 2021;9:329–335.
  • Wang J, Zhu G, Wang L, et al. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: experiments and crystal plasticity modeling. J Mater Sci Technol. 2021;84:27–42.
  • Zha M, Zhang H-M, Wang C, et al. Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg–Al–Zn alloys. J Alloys Compd. 2017;728:682–693.
  • Birol Y, Karlik M. The interaction of natural ageing with straining in a twin-roll cast AlMgSi automotive sheet. Scr Mater. 2006;55:625–628.
  • Li H, Yan Z, Cao L. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body. Mater Sci Eng A. 2018;728:88–94.
  • Marioara CD, Andersen SJ, Jansen J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Mater. 2003;51:789–796.
  • Bian MZ, Sasaki TT, Nakata T, et al. Bake-hardenable Mg–Al–Zn–Mn–Ca sheet alloy processed by twin-roll casting. Acta Mater. 2018;158:278–288.
  • Wang Q, Liu L, Jiang B, et al. Twin nucleation, twin growth and their effects on annealing strengths of Mg–Al–Zn–Mn sheets experienced different pre-compressive strains. J Alloys Compd. 2020;815:152310.
  • Zeng ZR, Zhu YM, Bian MZ, et al. Annealing strengthening in a dilute Mg–Zn–Ca sheet alloy. Scr Mater. 2015;107:127–130.
  • Dehghani K. Bake hardening of nanograin AA7075 aluminum alloy. Mater Sci Eng A. 2011;530:618–623.
  • Suh B-C, Shim M-S, Shin KS, et al. Current issues in magnesium sheet alloys: where do we go from here? Scr. Mater. 2014; 84–85:1-6.
  • Mendis CL, Bae JH, Kim NJ, et al. Microstructures and tensile properties of a twin roll cast and heat-treated Mg–2.4Zn–0.1Ag–0.1Ca–0.1Zr alloy. Scr Mater. 2011;64:335–338.
  • Nakata T, Xu C, Suzawa K, et al. Enhancing mechanical properties of rolled Mg-Al-Ca-Mn alloy sheet by Zn addition. Mater Sci Eng A. 2018;737:223–229.
  • Li ZH, Sasaki TT, Bian MZ, et al. Role of Zn on the room temperature formability and strength in Mg–Al–Ca–Mn sheet alloys. J Alloys Compd. 2020;847:156347.
  • Sasaki TT, Yamamoto K, Honma T, et al. A high-strength Mg–Sn–Zn–Al alloy extruded at low temperature. Scr Mater. 2008;59:1111–1114.
  • Li ZH, Sasaki TT, Shiroyama T, et al. Simultaneous achievement of high thermal conductivity, high strength and formability in Mg-Zn-Ca-Zr sheet alloy. Mater Res Lett. 2020;8:335–340.
  • Davis AE, Robson JD, Turski M. The effect of multiple precipitate types and texture on yield asymmetry in Mg-Sn-Zn(-Al-Na-Ca) alloys. Acta Mater. 2018;158:1–12.
  • Bhattacharjee T, Suh BC, Sasaki TT, et al. High strength and formable Mg–6.2Zn–0.5Zr–0.2Ca alloy sheet processed by twin roll casting. Mater Sci Eng A. 2014;609:154–160.
  • Zhao L-Q, Wang C, Chen J-C, et al. Development of weak-textured and high-performance Mg–Zn–Ca alloy sheets based on Zn content optimization. J Alloys Compd. 2020;849:156640.
  • Heng X, Zhang Y, Rong W, et al. A super high-strength Mg-Gd-Y-Zn-Mn alloy fabricated by hot extrusion and strain aging. Mater Des. 2019;169:107666.
  • Si H, Jiang Y, Tang Y, et al. Stable and metastable phase equilibria in binary Mg-Gd system: a comprehensive understanding aided by CALPHAD modeling. J MagnesAlloys. 2019;7:501–513.