1,743
Views
3
CrossRef citations to date
0
Altmetric
Original Reports

Effect of lattice strain on magnetism in epitaxial YCrO3 films

, , , , , , , & show all
Pages 29-35 | Received 05 Aug 2021, Published online: 08 Jan 2022

References

  • Serrao CR, Kundu AK, Krupanidhi SB, et al. Biferroic YCrO3. Phys Rev B. 2005;72:220101.
  • Shi J, Seehra MS, Dang Y, et al. Comparison of the dielectric and magnetocaloric properties of bulk and film of GdFe0.5Cr0.5O3. J Appl Phys. 2021;129:243904.
  • Rajeswaran B, Khomskii DI, Zvezdin AK, et al. Field-induced polar order at the néel temperature of chromium in rare-earth orthochromites: interplay of rare-earth and Cr magnetism. Phys Rev B. 2012;86:214409.
  • Preethi Meher KRS, Wahl A, Maignan A, et al. Observation of electric polarization reversal and magnetodielectric effect in orthochromites: A comparison between LuCrO3 and ErCrO3. Phys Rev B. 2014;89:144401.
  • Cheong S-W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat Mater. 2007;6:13–20.
  • Ramesh R, Spaldin NA. Multiferroics: progress and prospects in thin films. Nanosci Technol Collect Rev Nature J. 2010: 20–28.
  • Spaldin NA, Fiebig M. The renaissance of magnetoelectric multiferroics. Science. 2005;309:391–392.
  • Ray N, Waghmare UV. Coupling between magnetic ordering and structural instabilities in perovskite biferroics: a first-principles study. Phys Rev B. 2008;77:134112.
  • Cao Y, Cao S, Ren W, et al. Magnetization switching of rare earth orthochromite CeCrO3. Appl Phys Lett. 2014;104:232405.
  • Sahu JR, Serrao CR, Ray N, et al. Rare earth chromites: a new family of multiferroics. J Mater Chem. 2007;17:42–44.
  • Ramesha K, Llobet A, Proffen T, et al. Observation of local non-centrosymmetry in weakly biferroic YCrO3. J Phys: Condens Matter. 2007;19:102202.
  • Dalal B, Sarkar B, Rayaprol S, et al. Unveiling ferrimagnetic ground state, anomalous behavior of the exchange-bias field around spin reorientation, and magnetoelectric coupling in YbC r1–xFeXO3 (0.1 ≤X≤ 0.6). Phys Rev B. 2020;101:144418.
  • Saha R, Sundaresan A, Rao CNR. Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity. Mater Horiz. 2014;1:20–31.
  • Durán A, Escamilla R, Escudero R, et al. Reversal magnetization, spin reorientation, and exchange bias in YCrO3 doped with praseodymium. Phys Rev Mater. 2018;2:014409.
  • Fita I, Puzniak R, Wisniewski A, et al. Spin switching and unusual exchange bias in the single-crystalline GdCrO3 compensated ferrimagnet. Phys Rev B. 2019;100:144426.
  • Su Y, Zhang J, Feng Z, et al. Magnetization reversal and Yb3+/Cr3+ spin ordering at low temperature for perovskite YbCrO3 chromites. J Appl Phys. 2010;108:013905.
  • Kumar A, Yusuf SM. The phenomenon of negative magnetization and its implications. Phys Rep. 2015;556:1–34.
  • Oliveira G, Teixeira R, Moreira R, et al. Local inhomogeneous state in multiferroic SmCrO3. Sci Rep. 2020;10:1–12.
  • Gupta P, Bhargava R, Poddar P. Colossal increase in negative magnetization, exchange bias and coercivity in samarium chromite due to a strong coupling between Sm3+–Cr3+ spins sublattices. J Phys D: Appl Phys. 2014;48:025004.
  • Zhou J-S, Alonso JA, Muoñz A, et al. Magnetic structure of LaCrO3 perovskite under high pressure from In situ neutron diffraction. Phys Rev Lett. 2011;106:057201.
  • Bolletta JP, Pomiro F, Sánchez RD, et al. Spin reorientation and metamagnetic transitions in RFe0.5Cr0.5O3 perovskites (R = Tb, Dy, Ho, Er). Phys Rev B. 2018;98:134417.
  • Taheri M, Razavi FS, Yamani Z, et al. Structural, magnetic, and thermal properties of Ce1−×EuXCrO3 orthochromite solid solutions. Phys Rev B. 2019;99:054411.
  • Fu D, Liu Y, Zhang H, et al. The evolution of magnetization switching of LuCrO3 by the effect of Mn doping. J Alloys Compd. 2018;735:1052–1062.
  • Mall AK, Garg A, Gupta R. Modifications of the structure and magnetic properties of ceramic YCrO3 with Fe/Ni doping. Mater Res Express. 2017;4:076104.
  • Sharma Y, Skoropata E, Paudel B, et al. Epitaxial stabilization of single-crystal multiferroic YCrO3 thin films. Nanomaterials. 2020;10:2085.
  • Zvezdin A, Gareeva Z.Multiferroic order parameters in rhombic antiferromagnets. RCrO3. arXiv preprint arXiv:201205659. 2020.
  • Sharma Y, Paudel B, Lee J, et al. Tuning magnetic and optical properties through strain in epitaxial LaCrO3 thin films. Appl Phys Lett. 2021;119:071902.
  • Zhao HJ, Ren W, Chen XM, et al. Effect of chemical pressure, misfit strain and hydrostatic pressure on structural and magnetic behaviors of rare-earth orthochromates. J Phys Condens Matter. 2013;25:385604.
  • McDannald A, Vijayan S, Shi J, et al. Magnetic and tunable dielectric properties of DyCrO3 thin films. J Mater Sci. 2019;54:8984–8994.
  • Goodenough JB. Electronic and ionic transport properties and other physical aspects of perovskites. Rep Prog Phys. 2004;67:1915–1993.
  • Subba Rao GV, Wanklyn BM, Rao CNR. Electrical transport in rare earth ortho-chromites, -manganites and -ferrites. J Phys Chem Solids. 1971;32:345–358.
  • Sharma Y, Misra P, Katiyar RS. Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications. J Appl Phys. 2014;116:084505.
  • Gervacio-Arciniega JJ, Murillo-Bracamontes E, Contreras O, et al. Multiferroic YCrO3 thin films: structural, ferroelectric and magnetic properties. Appl Surf Sci. 2018;427:635–639.
  • Serrao CR, Kundu AK, Krupanidhi SB, et al. Biferroic YCrO3. Phys Rev B. 2005;72:220101.
  • Ray N, Waghmare UV. Coupling between magnetic ordering and structural instabilities in perovskite biferroics: a first-principles study. Phys Rev B. 2008;77:134112.
  • Sharma Y, Sahoo S, Perez W, et al. Phonons and magnetic excitation correlations in weak ferromagnetic YCrO3. J Appl Phys. 2014;115:183907.
  • Solin SA, Ramdas AK. Raman spectrum of diamond. Phys Rev B. 1970;1:1687–1698.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169.
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758.
  • Martin RM. Electronic structure: basic theory and practical methods. Cambridge University Press; 2020.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.
  • Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B. 1976;13:5188.
  • Dudarev S, Botton G, Savrasov S, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys Rev B. 1998;57:1505.
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.
  • Sardar K, Lees MR, Kashtiban RJ, et al. Direct hydrothermal synthesis and physical properties of rare-earth and yttrium orthochromite perovskites. Chem Mater. 2011;23:48–56.
  • Todorov ND, Abrashev MV, Ivanov VG, et al. Comparative Raman study of isostructural YCrO3 and YMnO3: effects of structural distortions and twinning. Phys Rev B. 2011;83:224303.
  • Weng Y, Huang X, Tang Y, et al. Magnetic orders of LaTiO3 under epitaxial strain: a first-principles study. J Appl Phys. 2014;115:17E108.