2,895
Views
14
CrossRef citations to date
0
Altmetric
Original Reports

Unique precipitations in a novel refractory Nb-Mo-Ti-Co high-entropy superalloy

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 78-87 | Received 15 Nov 2021, Published online: 17 Jan 2022

References

  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater. 2020;32:1–9.
  • Pang J, Zhang H, Zhang L, et al. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Mater Lett. 2021;290:129428.
  • Jensen JK, Welk BA, Williams REA, et al. Characterisation of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr Mater. 2016;121:1–4.
  • Soni V, Senkov ON, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy. Sci Rep. 2018;8:1–10.
  • Schliephake D, Medvedev AE, Imran MK, et al. Precipitation behaviour and mechanical properties of a novel Al0.5MoTaTi complex concentrated alloy. Scr Mater. 2019;173:16–20.
  • Miracle DB, Tsai MH, Senkov ON, et al. Refractory high entropy superalloys (RSAs). Scr Mater. 2020;187:445–452.
  • Senkov ON, Isheim D, Seidman DN, et al. Development of a refractory high entropy superalloy. Entropy. 2016;18:1–13.
  • Senkov ON, Jensen JK, Pilchak AL, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater Des. 2018;139:498–511.
  • Soni V, Gwalani B, Senkov ON, et al. Phase stability as a function of temperature in a refractory high-entropy alloy. J Mater Res. 2018;33:3235–3246.
  • Soni V, Gwalani B, Alam T, et al. Phase inversion in a two-phase, BCC + B2, refractory high entropy alloy. Acta Mater. 2020;185:89–97.
  • Soni V, Senkov ON, Couzinie J-P, et al. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40. Materialia. 2020;9:100569.
  • Whitfield TE, Pickering EJ, Owen LR, et al. The effect of Al on the formation and stability of a BCC – B2 microstructure in a refractory metal high entropy superalloy system. Materialia. 2020;13:100858.
  • Laube S, Schellert S, Tirunilai AS, et al. Microstructure tailoring of Al-containing compositionally complex alloys by controlling the sequence of precipitation and ordering. Acta Mater. 2021;218:117217.
  • Ghosh G, Olson GB. Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results. Acta Mater. 2007;55:3281–3303.
  • Knowles AJ, Jones NG, Messé OMDM, et al. Phase equilibria in the Fe-Mo-Ti ternary system at 1000 C. Int J Refract Met Hard Mater. 2016;60:160–168.
  • Knowles AJ, Dye D, Dodds RJ, et al. Tungsten-based bcc-superalloys. Appl Mater Today. 2021;23:101014.
  • Senkov ON, Rao SI, Butler TM, et al. Ductile Nb alloys with reduced density and cost. J Alloys Compd. 2019;808:151685.
  • Wang Z, Jin D, Han J, et al. Microstructures and mechanical properties of Al-Ti-Zr-Nb-Ta-Mo-V refractory high-entropy alloys with coherent B2 nanoprecipitation. Cryst. 2021;11:833.
  • Yurchenko N, Panina E, Shaysultanov D, et al. Refractory high entropy alloy with ductile intermetallic B2 matrix/ hard bcc particles and exceptional strain hardening capacity. Materialia. 2021;20:101225.
  • Ishikawa F, Takahashi T, Ochi T. Intragranular ferrite nucleation in medium-carbon vanadium steels. Metall Mater Trans A. 1994;25(5):929–936.
  • Shanmugam S, Misra RDK, Mannering T, et al. Impact toughness and microstructure relationship in niobium- and vanadium-microalloyed steels processed with varied cooling rates to similar yield strength. Mater Sci Eng A. 2006;437:436–445.
  • Furuhara T, Shinyoshi T, Miyamoto G, et al. Multiphase crystallography in the nucleation of intragranular ferrite on MnS + V(C, N) complex precipitate in Austenite. ISIJ Int. 2003;43:2028–2037.
  • Leonard KJ, Busby JT, Hoelzer DT, et al. Nb-Base FS-85 alloy as a candidate structural Material for space reactor applications: effects of thermal aging. Metall Mater Trans A. 2009;40(4):838–855.
  • Vishwanadh B, Arya A, Tewari R, et al. Formation mechanism of stable NbC carbide phase in Nb-1Zr-0.1C (wt.%) alloy. Acta Mater. 2018;144:470–483.
  • Ikehata H, Mayweg D, Jägle E. Grain refinement of Fe–Ti alloys fabricated by laser powder bed fusion. Mater Des. 2021;204:109665.
  • Wang Q, Han J, Liu Y, et al. Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0.4Nb0.5Ta0.5TiZr0.8 refractory high entropy alloy. Scr Mater. 2021;190:40–45.
  • Lv S, Zu Y, Chen G, et al. A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness. Mater Sci Eng A. 2020;795:140035.
  • Liu Q, Wang G, Sui X, et al. Ultra-fine grain TixVNbMoTa refractory high-entropy alloys with superior mechanical properties fabricated by powder metallurgy. J Alloys Compd. 2021;865:158592.
  • Zhao B, Chen G, Lv S, et al. Doping N/O impurities into a MoNbTiWZr refractory multi-principal element alloy and the strengthening mechanism. J Mater Eng Perform. 2021;2021:1–11.
  • Ma X, Guo X, Fu M, et al. Precipitation and martensitic transformation of fcc-Ti in Nb–Ti–Si based ultrahigh temperature alloys. Intermetallics. 2016;70:17–23.
  • Ma X, Guo X, Fu M, et al. In-situ TEM observation of hcp-Ti to fcc-Ti phase transformation in Nb-Ti-Si based alloys. Mater Charact. 2018;142:332–339.
  • Senkov ON, Rao SI, Butler TM, et al. Microstructure and properties of Nb-Mo-Zr based refractory alloys. Int J Refract Met Hard Mater. 2020;92:105321.
  • Enomoto M. Nucleation of phase transformations at intragranular inclusions in steel. Met Mater. 1998;4(2):115–123.
  • Sarma DS, Karasev A V, Jönsson PG. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int. 2009;49:1063–1074.
  • Mills AR, Thewlis G, Whiteman JA. Nature of inclusions in steel weld metals and their influence on formation of acicular ferrite. Mater Sci Technol. 1987;3:1051–1061.
  • Bramfitt BL. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall Trans. 1970;1:2958.
  • Davydov A V, Kattner UR, Josell D, et al. Determination of the CoTi congruent melting point and thermodynamic reassessment of the Co-Ti system. Metall Mater Trans A. 2001;32(9):2175–2186.
  • Wadsworth J, Nieh TG, Stephens JJ. Recent advances in aerospace refractory metal alloys. Int Mater Rev. 1988;33:131–150.
  • El-Genk MS, Tournier JM. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems.J Nucl Mater. 2005;340:93–112.
  • Knabl W, Leichtfried G, Stickler R. Refractory metals and refractory metal alloys. Springer Handbooks. Springer International Publishing; 2018. p. 307–337.
  • Liu CT, Inouye H. Internal oxidation and mechanical properties of TZM-Mo alloy. Metall Mater Trans B. 1974;5(12):2515–2525.
  • Donoso JR, Reed-Hill RE. Slow strain-rate embrittlement of niobium by oxygen. Metall Trans A. 1976;7(7):961–965.
  • Shiraishi H, Furuya K, Watanabe R. Change in solute oxygen level and loss of ductility of niobium during oxidation in imperfect vacuum conditions. J Less Common Met. 1979;63:147–158.
  • DiStefano JR, Chitwood LD. Oxidation and its effects on the mechanical properties of Nb–1Zr. J Nucl Mater. 2001;295:42–48.
  • Kim WY, Tanaka H, Kasama A, et al. Effect of carbon on the tensile properties of Nb–Mo–W alloys at 1773K. J Alloys Compd. 2002;333:170–178.
  • Yang PJ, Li QJ, Tsuru T, et al. Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium. Acta Mater. 2019;168:331–342.
  • Yang PJ, Li QJ, Han WZ, et al. Designing solid solution hardening to retain uniform ductility while quadrupling yield strength. Acta Mater. 2019;179:107–118.
  • Zhang J, Han WZ. Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium. Acta Mater. 2020;196:122–132.
  • Chen Y, Li Y, Cheng X, et al. Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x = 0.05, 0.1, 0.2) high-entropy alloys. Mater Lett. 2018;228:145–147.
  • Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563:546–550.
  • Gladman T. Precipitation hardening in metals. Mater Sci Technol. 1999;15:30–36.