4,897
Views
8
CrossRef citations to date
0
Altmetric
Original Reports

Novel NiFe-LDH@Ni-MOF/NF heterostructured electrocatalysts for efficient oxygen evolution

, , , , &
Pages 88-96 | Received 20 Sep 2021, Published online: 17 Jan 2022

References

  • Coridan RH, Nielander AC, Francis SA, et al. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ Sci. 2015;8:2886–2901.
  • Ma Y-Y, Wu C-X, Feng X-J, et al. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ Sci. 2017;10:788–798.
  • Liu J, Zhu D, Guo C, et al. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv Energy Mater. 2017;7:1700518.
  • Zhao X, Pattengale B, Fan D, et al. Mixed-node metal–organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett. 2018;3:2520–2526.
  • Garcia AC, Koper MTM. Effect of saturating the electrolyte with oxygen on the activity for the oxygen evolution reaction. ACS Catal. 2018;8:9359–9363.
  • Nong HN, Reier T, Oh H-S, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nature Catal. 2018;1:841–851.
  • Cai Z, Bu X, Wang P, et al. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J Mater Chem A. 2019;7:5069–5089.
  • Huang L, Gao G, Zhang H, et al. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution. Nano Energy. 2020;68:104296.
  • Muthurasu A, Maruthapandian V, Kim HY. Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl Catal B Environ. 2019;248:202–210.
  • Yang G, Li Y, Lin H, et al. Constructing chemical interaction between hematite and carbon nanosheets with single active sites for efficient photo-electrochemical water oxidation. Small Methods. 2020;4:2000577.
  • Yang X, Chen J, Chen Y, et al. Novel CO3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. 2017;10:15.
  • Dinh KN, Zheng P, Dai Z, et al. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small. 2018;14:1703257.
  • Zhang H, Li X, Hähnel A, et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater. 2018;28:1706847.
  • Dou S, Wang X, Wang S. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods. 2019;3:1800211.
  • Zhang M, Liu Y, Liu B, et al. Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural. ACS Catal. 2020;10:5179–5189.
  • Lu X, Xue H, Gong H, et al. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Lett. 2020;12:86.
  • Kuang M, Zhang J, Liu D, et al. Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction. Adv Energy Mater. 2020;10:2002215.
  • Ning M, Wu L, Zhang F, et al. One-step spontaneous growth of NiFe layered double hydroxide at room temperature for seawater oxygen evolution. Mater Today Phys. 2021;19:100419.
  • Yang L, Liu Z, Zhu S, et al. Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Mater Today Phys. 2021;16:100292.
  • Li F-L, Shao Q, Huang X, et al. Nanoscale trimetallic metal–organic frameworks enable efficient oxygen evolution electrocatalysis. Angewandte Chem Int Ed. 2018;57:1888–1892.
  • Li L, He J, Wang Y, et al. Metal-organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. J Mater Chem A. 2019;7:1964–1988.
  • Zhao S, Tan C, He C-T, et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy. 2020;5:881–890.
  • Xie LS, Skorupskii G, Dincă M. Electrically conductive metal–organic frameworks. Chem Rev. 2020;120:8536–8580.
  • Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy. 2016;1:16184.
  • Wang B, Jiao S, Wang Z, et al. Rational design of NiFe LDH@Ni3N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. J Mater Chem A. 2020;8:17202–17211.
  • Sun F, Wang G, Ding Y, et al. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv Energy Mater. 2018;8:1800584.
  • Cao C, Ma D-D, Xu Q, et al. Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv Funct Mater. 2019;29:1807418.
  • Li W, Li F, Yang H, et al. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nature Commun. 2019;10:5074.
  • Lu Z, Xu W, Zhu W, et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem Commun. 2014;50:6479–6482.
  • Zhang F-S, Wang J-W, Luo J, et al. Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chem Sci. 2018;9:1375–1384.
  • Mesbah A, Rabu P, Sibille R, et al. From hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to anhydrous Ni2(OH)2-(C8H4O4): impact of structural transformations on magnetic properties. Inorg Chem. 2014;53:872–881.
  • Kirchon A, Feng L, Drake HF, et al. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev. 2018;47:8611–8638.
  • Liu Q, Xie L, Shi X, et al. High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inorg Chem Front. 2018;5:1570–1574.
  • Cai Z, Bu X, Wang P, et al. Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2019;7:21722–21729.
  • Qiu Z, Tai C-W, Niklasson GA, et al. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ Sci. 2019;12:572–581.
  • Wu Q, Yang H, Kang L, et al. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: acceleration of Fe(II)/ Fe(III) cycle under visible light irradiation. Appl Catal B Environ. 2020;263:118282.
  • Sanati S, Rezvani Z. Ultrasound-assisted synthesis of NiFe- layered double hydroxides as efficient electrode materials in supercapacitors. Ultrason Sonochem. 2018;48:199–206.
  • Li F-L, Wang P, Huang X, et al. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angewandte Chem Int Ed. 2019;58:7051–7056.
  • Cao J, Wang C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Appl Surf Sci. 2017;405:380–388.
  • Yan X, Xing Z, Cao Y, et al. In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts. Appl Catal B Environ. 2017;219:572–579.
  • Liang C, Qiu H, Han Y, et al. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J Mater Chem C. 2019;7:2725–2733.
  • Zhou D, Jia Y, Duan X, et al. Breaking the symmetry: gradient in NiFe layered double hydroxide nanoarrays for efficient oxygen evolution. Nano Energy. 2019;60:661–666.
  • Dutta S, Indra A, Feng Y, et al. Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride. Appl Catal B Environ. 2019;241:521–527.
  • Deng X, Li J, Shan Z, et al. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J Mater Chem A. 2020;8:11617–11625.
  • Zhang R, Wang G, Wei Z, et al. A Fe-Ni5P4/Fe-Ni2P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. J Mater Chem A. 2021;9:1221–1229.
  • Xie J, Gao L, Cao S, et al. Copper-incorporated hierarchical wire-on-sheet α-Ni(OH)2 nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation. J Mater Chem A. 2019;7:13577–13584.
  • Karmakar A, Srivastava SK. In situ fabricated nickel vanadate/N-doped reduced graphene oxide hybrid as an advanced electrocatalyst in alkaline hydrogen evolution reaction. J Mater Chem A. 2019;7:15054–15061.
  • Thangasamy P, Shanmuganathan S, Subramanian V. A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction. Nanoscale Adv. 2020;2:2073–2079.
  • Fan R, Zhou J, Xun W, et al. Highly efficient and stable Si photocathode with hierarchical MoS2/Ni3S2 catalyst for solar hydrogen production in alkaline media. Nano Energy. 2020;71:104631.
  • Wang Y, Yan L, Dastafkan K, et al. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv Mater. 2021;33:2006351.
  • Liu J, Gao Y, Tang X, et al. Metal–organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. J Mater Chem A. 2020;8:19254–19261.
  • Saad A, Shen H, Cheng Z, et al. Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 2020;12:79.