3,893
Views
7
CrossRef citations to date
0
Altmetric
Original Reports

Microstructure evolution and composition redistribution of FeCoNiCrMn high entropy alloy under extreme plastic deformation

, , , , ORCID Icon, & ORCID Icon show all
Pages 124-132 | Received 19 Oct 2021, Published online: 28 Jan 2022

References

  • Liu ZY, Wang HZ, Hache M, et al. Formation of refined grains below 10 nm in size and nanoscale interlocking in the particle-particle interfacial regions of cold sprayed pure aluminum. Scr Mater. 2020;177:96–100.
  • Villegas JC, Shaw LL. Nanocrystallization process and mechanism in a nickel alloy subjected to surface severe plastic deformation. Acta Mater. 2009;57:5782–5795.
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189.
  • Chen M, McCauley JW, Hemker KJ. Shock-induced localized amorphization in boron carbide. Science. 2003;299:1563–1566.
  • Li SZ, Pastewka L, Gumbsch P. Glass formation by severe plastic deformation of crystalline Cu vertical bar Zr nano-layers. Acta Mater. 2019;165:577–586.
  • Wang M, Averback RS, Bellon P, et al. Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation. Acta Mater. 2014;62:276–285.
  • Bachmaier A, Pippan R. Generation of metallic nanocomposites by severe plastic deformation. Int Mater Rev. 2013;58:41–62.
  • Romankov S, Park YC, Shchetinin IV, et al. Atomic-scale intermixing, amorphization and microstructural development in a multicomponent system subjected to surface severe plastic deformation. Acta Mater. 2013;61:1254–1265.
  • Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite. ACTA Mater. 2005;53:2127–2135.
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515–534.
  • George EP, Curtin WA, Tasan CC. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435–474.
  • Park JM, Moon J, Bae JW, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2018;719:155–163.
  • Li Z, Zhao S, Alotaibi SM, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2018;151:424–431.
  • Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015;96:258–268.
  • Zhao S, Li Z, Zhu C, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci Adv. 2021;7:eabb3108.
  • Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf. 2018;21:628–650.
  • Zhang Y, Bian T, Shen X, et al. Sintering mechanism and microstructure evolution of a CoCrFeNiMn high entropy alloy fabricated by metal injection molding. J Alloys Compd. 2021;868:158711.
  • Assadi H, Kreye H, Gärtner F, et al. Cold spraying – a materials perspective. Acta Mater. 2016;116:382–407.
  • Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–574.
  • Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130–207.
  • Pan X, Wang X, Tian Z, et al. Effect of dynamic recrystallization on texture orientation and grain refinement of Ti6Al4 V titanium alloy subjected to laser shock peening. J Alloys Compd. 2021;850:156672.
  • Lu JZ, Wu LJ, Sun GF, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017;127:252–266.
  • King PC, Zahiri SH, Jahedi M. Microstructural refinement within a cold-sprayed copper particle. Metall Mater Trans A. 2009;40:2115–2123.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Oxford: Elsevier; 2012.
  • Derby B. The dependence of grain size on stress during dynamic recrystallisation. Acta Metall Mater. 1991;39:955–962.
  • Mecking UFK. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48:171–273.
  • Fleck NA, Muller GM, Ashby MF, et al. Strain gradient plasticity: theory and experiment. Acta Metall Mater. 1994;42:475–487.
  • Liu XC, Zhang HW, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science. 2013;342:337–340.
  • Zhu C, Harrington T, Gray GT, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel. Acta Mater. 2018;155:104–116.
  • Pan X, He W, Huang X, et al. Plastic deformation behavior of titanium alloy by warm laser shock peening: microstructure evolution and mechanical properties. Surf Coatings Technol. 2021;405:126670.
  • Zhang J, Wang B, Wang H. Geometrically necessary dislocations distribution in face-centred cubic alloy with varied grain size. Mater Charact. 2020;162:110205.
  • Littlewood PD, Britton TB, Wilkinson AJ. Geometrically necessary dislocation density distributions in Ti–6Al–4V deformed in tension. Acta Mater. 2011;59:6489–6500.
  • Otto F, Dlouhý A, Pradeep KG, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 2016;112:40–52.
  • Laurent-Brocq M, Akhatova A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Mater. 2015;88:355–365.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218.
  • Prashanth KG, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys. J Alloys Compd. 2017;707:27–34.
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17:63–71.
  • Zhu ZG, Nguyen QB, Ng FL, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr Mater. 2018;154:20–24.
  • Napolitano RE, Schaefer RJ. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings. J Mater Sci. 2000;35:1641–1659.
  • Wagner A, Shollock BA, McLean M. Grain structure development in directional solidification of nickel-base superalloys. Mater Sci Eng A. 2004;374:270–279.
  • Beke DL, Erdélyi G. On the diffusion in high-entropy alloys. Mater Lett. 2016;164:111–113.
  • Hart EW. On the role of dislocations in bulk diffusion. Acta Metall. 1957;5:597.
  • Humphreys FJ, Hatherly M. Chapter 4 – the structure and energy of grain boundaries. In: Humphreys FJ, Hatherly M, editors. Recrystallization and related annealing phenomena. 2nd ed. Oxford: Elsevier; 2004. p. 91–119.
  • Paul A, Laurila T, Vuorinen V, et al. Thermodynamics, diffusion and the Kirkendall effect in solids. Cham: Springer; 2014.
  • Glienke M, Vaidya M, Gururaj K, et al. Grain boundary diffusion in CoCrFeMnNi high entropy alloy: kinetic hints towards a phase decomposition. Acta Mater. 2020;195:304–316.