3,193
Views
6
CrossRef citations to date
0
Altmetric
Original Reports

Design of BCC refractory multi-principal element alloys with superior mechanical properties

, , , , , , , , & show all
Pages 133-140 | Received 04 Nov 2020, Published online: 31 Jan 2022

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Gludovatz B, Hohenward A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158.
  • Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362:933–937.
  • Wei SL, Kim SJ, Kang JY, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat Mater. 2020;19(11):1175–1181.
  • An ZB, Mao SC, Yang T, et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater Horiz. 2021: 948–955.
  • An ZB, Mao SC, Liu YN, et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion. J Mater Sci Technol. 2021;79:109–117.
  • Wang M, Ma ZL, Xu ZQ, et al. Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications. Scr Mater. 2021;191:131–136.
  • Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014;65:85–97.
  • Juan CC, Tsai MH, Tsai CW, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics. 2015;62:76–83.
  • Senkov ON, Miracle DB. Development and exploration of refractory high entropy alloys—A review. J Mater Res. 2018;33(19):3092–3128.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Yuan Y, Wu Y, Yang Z, et al. Formation structure and properties of biocompatible TiZrHfNbTa high entropy alloys. Mater Res Lett. 2019;7(6):225–231.
  • Lilensten L, Couzinié JP, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 2018;142:131–141.
  • Senkov ON, Pilchak AL, Semiatin SL. Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy. Metall Mater Trans A. 2018;49(7):2876–2892.
  • Zýka J, Málek J, Veselý J, et al. Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system. Entropy. 2019;21(2):114.
  • Huang HL, Wu Y, He JY, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater. 2017;29:1701678.
  • Coury FG, Kaufman M, Clarke AJ. Solid-solution strengthening in refractory high entropy alloys. Acta Mater. 2019;175:66–68.
  • Toda-Caraballo I, Rivera-Díaz-del-Castillo PEJ. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015;85:14–23.
  • Li L, Fang QH, Li J, et al. Lattice-distortion dependent yield strength in high entropy alloys. Mater Sci Eng A. 2020;784:139323.
  • Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high-entropy alloys. J Appl Phys. 2016;120(16):164902.
  • Wang ZP, Fang QH, Li J, et al. Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. J Mater Sci Technol. 2018;34(2):349–354.
  • Senkov ON, Miracle DB, Rao SI. Correlations to improve room temperature ductility of refractory complex concentrated alloys. Mater Sci Eng A. 2021;820:141512.
  • Mustafi L, Nguyen V, Lu SL, et al. Microstructure, tensile properties and deformation behaviour of a promising bio-applicable new Ti35Zr15Nb25Ta25 medium entropy alloy (MEA). Mater Sci Eng A. 2021;824:141805.
  • Nguyen VT, Qian M, Shi Z, et al. Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach. Mater Sci Eng A. 2019;742:762–772.
  • Sheng G, Liu CT. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int. 2011;21(6):433–446.
  • Li M, Zhang Z, Thind AS, et al. Microstructure and properties of NbVZr refractory complex concentrated alloys. Acta Mater. 2021;213:116919.
  • Lai WJ, Liu H, Yu X, et al. A design of TiZr-rich body-centered cubic structured multi-principal element alloys with outstanding tensile strength and ductility. Mater Sci Eng A. 2021;813:141135.
  • Chen YW, Xu ZQ, Wang M, et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties. Mater Sci Eng A. 2020;792:139774.
  • Yan XH, Zhang Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties. Scr Mater. 2020;178:329–333.
  • Wang SB, Wu DL, She H, et al. Design of high-ductile medium entropy alloys for dental implants. Mater Sci Eng C. 2020;113:110959.
  • Wang SP, Ma E, Xu J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution. Intermetallics. 2019;107:15–23.
  • Wu YD, Cai YH, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett. 2014;130:277–280.
  • Wang SP, Ma E, Xu J. Notch fracture toughness of body-centered-cubic (TiZrNbTa) Mo high-entropy alloys. Intermetallics. 2018;103:78–87.
  • Chen SY, Tseng KK, Tong Y, et al. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J Alloys Compd. 2019;795:19–26.
  • Senkov ON, Wilks  GB, Miracle DB, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706.
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18(9):1758–1765.
  • Lee C, Song G, Gao MC, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater. 2018;160:158–172.
  • Tong Y, Zhao SJ, Bei HB, et al. Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys. Acta Mater. 2020;183:172–181.
  • Lai MJ, Tasan CC, Raabe D. On the mechanism of {332} twinning in metastable β titanium alloys. Acta Mater. 2016;111:173–186.
  • Bertrand E, Castany P, Péron I, et al. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis. Scr Mater. 2011;64(12):1110–1113.
  • Yasuda HY, Yamada Y, Cho K, et al. Deformation behavior of HfNbTaTiZr high entropy alloy singe crystals and polycrystals. Mater Sci Eng A. 2021;809:140983.
  • Couzinié JP, Lilensten L, Champion Y, et al. On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater Sci Eng A. 2015;645:255–263.
  • Wasserbäch W. Plastic deformation and dislocation arrangement of Nb [sbnd] 34 at.% Ta alloy single crystals. Philos Mag A. 1986;53(3):335–356.