4,823
Views
14
CrossRef citations to date
0
Altmetric
Brief Overview

Control methods and applications of interface contact electrification of triboelectric nanogenerators: a review

, ORCID Icon, , & ORCID Icon
Pages 97-123 | Received 18 Nov 2021, Published online: 28 Jan 2022

References

  • Xu C, Zhang B, Wang AC, et al. Contact-electrification between two identical materials: curvature effect. ACS Nano. 2019;13:2034–2041.
  • Chen L, Shi Q, Sun Y, et al. Controlling surface charge generated by contact electrification: strategies and applications. Adv Mater. 2018;30:e1802405.
  • Lin S, Xu L, Xu C, et al. Electron transfer in nanoscale contact electrification: effect of temperature in the metal-dielectric case. Adv Mater. 2019;31:e1808197.
  • Wang ZL, Wang AC. On the origin of contact-electrification. Mater Today. 2019;30:34–51.
  • Cezan SD, Nalbant AA, Buyuktemiz M, et al. Control of triboelectric charges on common polymers by photoexcitation of organic dyes. Nat Commun. 2019;10:276.
  • He W, Liu W, Chen J, et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat Commun. 2020;11:4277.
  • Wang H, Xu L, Bai Y, et al. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat Commun. 2020;11:4203.
  • Chen L, Chen C, Jin L. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ Sci. 2021;14:955.
  • Wong P-Y, Phang S-W, Baharum A. Effects of synthesised polyaniline (PAni) contents on the anti-static properties of PAni-based polylactic acid (PLA) films. RSC Adv. 2020;10:39693–39699.
  • Wang J, Bao L, Zhao H, et al. Preparation and characterization of permanently anti-static packaging composites composed of high impact polystyrene and ion-conductive polyamide elastomer. Compos Sci Technol. 2012;72:976–981.
  • Wang W, Yu A, Liu X, et al. Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy. 2020;71:104605.
  • Deng W, Zhou Y, Zhao X, et al. Ternary electrification layered architecture for high-performance triboelectric nanogenerators. ACS Nano. 2020;14:9050–9058.
  • Liu Z, Li H, Shi B, et al. Wearable and implantable triboelectric nanogenerators. Adv Funct Mater. 2019;29:1808820.
  • Zou Y, Raveendran V, Chen J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy. 2020;77:105303.
  • Fan F-R, Tian Z-Q, Lin Wang Z. Flexible triboelectric generator. Nano Energy. 2012;1:328–334.
  • Bai Y, Xu L, Lin S, et al. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv Energy Mater. 2020;10:2000605.
  • Wang H, Han M, Song Y, et al. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy. 2020: 105627.
  • Zhao Z, Huang Q, Yan C, et al. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy. 2020;70:104528.
  • Luo J, Wang ZL. Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications. EcoMat. 2020;2:e12059.
  • Luo J, Wang Z, Xu L, et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat Commun. 2019;10:5147.
  • Song Y, Wang N, Wang Y, et al. Direct current triboelectric nanogenerators. Adv Energy Mater. 2020;10:2002756.
  • Cheng R, Dong K, Liu L, et al. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano. 2020;14:15853–15863.
  • Rodrigues C, Nunes D, Clemente D, et al. Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives. Energy Environ Sci. 2020;13:2657–2683.
  • Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater. 2020;32:1902549.
  • Ahmed A, Hassan I, El-Kady MF, et al. Integrated triboelectric nanogenerators in the era of the internet of things. Adv Sci. 2019;6:1802230.
  • Wang H, Zhu J, He T, et al. Programmed-triboelectric nanogenerators—a multi-switch regulation methodology for energy manipulation. Nano Energy. 2020;78:105241.
  • Conta G, Libanori A, Tat T, et al. Triboelectric nanogenerators for therapeutic electrical stimulation. Adv Mater. 2021: 2007502.
  • Peng X, Dong K, Ye C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv. 2020;6: eaba9624.
  • Cheng T, Gao Q, Wang ZL. The current development and future outlook of triboelectric nanogenerators: a survey of literature. Adv Mater Tech. 2019;4:1800588.
  • Harmon W, Bamgboje D, Guo H, et al. Self-driven power management system for triboelectric nanogenerators. Nano Energy. 2020;71:104642.
  • Dong K, Peng X, An J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun. 2020;11:1–11.
  • Dharmasena R, Silva S. Towards optimized triboelectric nanogenerators. Nano Energy. 2019;62:530–549.
  • Lin Z, Zhang B, Zou H, et al. Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy. 2020;68:104378.
  • Paosangthong W, Torah R, Beeby S. Recent progress on textile-based triboelectric nanogenerators. Nano Energy. 2019;55:401–423.
  • Ryu H, Park H-m, Kim M-K, et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat Commun. 2021;12:1–9.
  • Lai Y, Hsiao Y, Wu H. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv Sci. 2019;6:1801883.
  • Xu L, Xu L, Luo J, et al. Hybrid all-in-one power source based on high-performance spherical triboelectric nanogenerators for harvesting environmental energy. Adv Energy Mater. 2020;10:2001669.
  • Chen A, Zhang C, Zhu G, et al. Polymer materials for high-performance triboelectric nanogenerators. Adv Sci. 2020;7:2000186.
  • Zhang Z, Jiang D, Zhao J, et al. Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv Energy Mater. 2020;10:1903713.
  • Li S, Liu D, Zhao Z, et al. A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. Acs Nano. 2020;14:2475–2482.
  • Wang N, Feng Y, Zheng Y, et al. Triboelectrification of interface controlled by photothermal materials based on electron transfer. Nano Energy. 2021;89:106336.
  • Qian C, Li L, Gao M, et al. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy. 2019;63:103885.
  • Zhang R, Dahlstrom C, Zou H, et al. Cellulose-based fully Green triboelectric nanogenerators with output power density of 300 W m(-2). Adv Mater. 2020;32:e2002824.
  • Nie S, Cai C, Lin X, et al. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain Chem Eng. 2020;8:18678–18685.
  • Yao C, Yin X, Yu Y, et al. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv Funct Mater. 2017;27:201700794.
  • He X, Zou H, Geng Z, et al. A Hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv Funct Mater. 2018;28:201805540.
  • Zhao Z, Zhou L, Li S, et al. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat Commun. 2021;12:1–8.
  • Wei XY, Zhu G, Wang ZL. Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials. Nano Energy. 2014;10:83–89.
  • Wang ZL. Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv Energy Mater. 2020;10:2000137.
  • Sun J, Li W, Liu G, et al. Triboelectric nanogenerator based on biocompatible polymer materials. J Phys Chem C. 2015;119:9061–9068.
  • Wu C, Wang AC, Ding W, et al. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater. 2019;9:1802906.
  • Kim H-J, Yim E-C, Kim J-H, et al. Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy. 2017;33:130–137.
  • Liu X, Zhao K, Yang Y. Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy. 2018;53:622–629.
  • Li Y, Zhao Z, Gao Y, et al. Low-cost, environmentally friendly, and high-performance triboelectric nanogenerator based on a common waste material. ACS Appl Mater Interfaces. 2021;13:30776–30784.
  • Khandelwal G, Chandrasekhar A, Maria Joseph Raj NP, et al. Metal–organic framework: A novel material for triboelectric nanogenerator–based self-powered sensors and systems. Adv Energy Mater. 2019;9:1803581.
  • Yu Z, Wang Y, Zheng J, et al. Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy. 2020;68:104382.
  • Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series. Nat Commun. 2019;10:1427.
  • Patnam H, Dudem B, Graham SA, et al. High-performance and robust triboelectric nanogenerators based on optimal microstructured poly(vinyl alcohol) and poly(vinylidene fluoride) polymers for self-powered electronic applications. Energy. 2021;223:120031.
  • Chen P, An J, Shu S, et al. Super-Durable, Low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv Energy Mater. 2021;11:02003066.
  • Oh H, Kwak SS, Kim B, et al. Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adva Funct Mater. 2019;29:201904066.
  • Yao Y, Jiang T, Zhang L, et al. Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl Mater Interfaces. 2016;8:21398–21406.
  • Wang X, Yang Y. Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy. 2017;32:36–41.
  • Choi J H, Ra Y, Cho S, et al. Electrical charge storage effect in carbon based polymer composite for long-term performance enhancement of the triboelectric nanogenerator. Compos Sci Technol. 2021;207:108680.
  • Li Z, Zhu M, Qiu Q, et al. Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy. 2018;53:726–733.
  • Luo J, Wang ZL. Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Materials. 2019;23:617–628.
  • Kwak S S, Kim S M, Ryu H, et al. Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy Environ Sci. 2019;12:3156–3163.
  • Jiang H, Lei H, Wen Z, et al. Charge-trapping-blocking layer for enhanced triboelectric nanogenerators. Nano Energy. 2020;75:105011.
  • Bai Y, Xu L, He C, et al. High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy. 2019;66:104117.
  • Hu Y, Zheng Z. Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy. 2019;56:16–24.
  • Yang D, Ni Y, Kong X, et al. Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano. 2021;15:14653–14661.
  • Wang Y, Duan J, Yang X, et al. The unique dielectricity of inorganic perovskites toward high-performance triboelectric nanogenerators. Nano Energy. 2020;69:104418.
  • Lin S, Zheng M, Luo J, et al. Effects of surface functional groups on electron transfer at liquid-solid interfacial contact electrification. ACS Nano. 2020;14:10733–10741.
  • Li Y, Zheng W, Zhang H, et al. Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators. Nano Energy. 2020;70:104540.
  • Xu C, Zi Y, Wang AC, et al. On the electron-transfer mechanism in the contact-electrification effect. Adv Mater. 2018;30:e1706790.
  • Lee H, Lee HE, Wang HS, et al. Hierarchically surface-textured ultrastable hybrid film for large-scale triboelectric nanogenerators. Adv Funct Mater. 2020;30:2005610.
  • Kang S-M, Lee HE, Wang HS, et al. Self-Powered flexible full-color display via dielectric-tuned hybrimer triboelectric nanogenerators. ACS Energy Lett. 2021;6:4097–4107.
  • Cui N, Gu L, Lei Y, et al. Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano. 2016;10:6131–6138.
  • Zi Y, Wang J, Wang S, et al. Effective energy storage from a triboelectric nanogenerator. Nat Commun. 2016;7:1–8.
  • Chen J, Guo H, He X, et al. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl Mater Interfaces. 2016;8:736–744.
  • Cheng X, Miao L, Song Y, et al. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy. 2017;38:438–446.
  • Niu S, Liu Y, Zhou YS, et al. Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans Electron Devices. 2014;62:641–647.
  • Cheng X, Tang W, Song Y, et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy. 2019;61:517–532.
  • Wang H L, Guo ZH, Zhu G, et al. Boosting the power and lowering the impedance of triboelectric nanogenerators through manipulating the permittivity for wearable energy harvesting. ACS Nano. 2021;15:7513–7521.
  • Kim S, Gupta MK, Lee KY, et al. Transparent flexible graphene triboelectric nanogenerators. Adv Mater. 2014;26:3918–3925.
  • Wang N, Feng Y, Zheng Y, et al. New hydrogen bonding enhanced polyvinyl alcohol based self-charged medical mask with superior charge retention and moisture resistance performances. Adv Funct Mater. 2021;31:202009172.
  • Wang H, Wang J, He T, et al. Direct muscle stimulation using diode-amplified triboelectric nanogenerators (TENGs). Nano Energy. 2019;63:103844.
  • Zhong W, Xu L, Zhan F, et al. Dripping channel based liquid triboelectric nanogenerators for energy harvesting and sensing. ACS Nano. 2020;14:10510–10517.
  • He X, Guo H, Yue X, et al. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale. 2015;7:1896–1903.
  • Song Y, Cheng X, Chen H, et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J Mater Chem A. 2016;4:14298–14306.
  • Han S A, Lee J, Lin J, et al. Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy. 2019;57:680–691.
  • Zhao Z, Dai Y, Liu D, et al. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat Commun. 2020;11:1–9.
  • Kwak SS, Yoon HJ, Kim SW. Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv Funct Mater. 2019;29:1804533.
  • Yi Z, Liu D, Zhou L, et al. Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere. Nano Energy. 2021;84:105864.
  • Mule A R, Dudem B, Graham SA, et al. Humidity sustained wearable pouch-type triboelectric nanogenerator for harvesting mechanical energy from human activities. Adv Funct Mater. 2019;29:201807779.
  • Wang N, Zheng Y, Feng Y, et al. Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment. Nano Energy. 2020;77:105088.
  • Xu C, Liu Y, Liu Y, et al. New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting. Appl Mater. Today. 2020;20:100645.
  • Zhang J, Zheng Y, Xu L, et al. Oleic-acid enhanced triboelectric nanogenerator with high output performance and wear resistance. Nano Energy. 2020;69:104435.
  • Zhang L, Li X, Zhang Y, et al. Regulation and influence factors of triboelectricity at the solid-liquid interface. Nano Energy. 2020;78:105370.
  • Feng Y, Zheng Y, Zhang G, et al. A new protocol toward high output TENG with polyimide as charge storage layer. Nano Energy. 2017;38:467–476.
  • Luo N, Feng Y, Wang D, et al. New Self-Healing triboelectric nanogenerator based on simultaneous repair friction layer and conductive layer. ACS Appl Mater Interfaces. 2020;12:30390–30398.
  • Cui S, Zheng Y, Zhang T, et al. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy. 2018;49:31–39.
  • Li X, Zhang L, Feng Y, et al. Solid–liquid triboelectrification control and antistatic materials design based on interface wettability control. Adv Funct Mater. 2019;29:201903587.
  • Cui S, Zheng Y, Liang J, et al. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 2018;11:1873–1882.
  • Xu S, Feng Y, Liu Y, et al. Gas-solid two-phase flow-driven triboelectric nanogenerator for wind-sand energy harvesting and self-powered monitoring sensor. Nano Energy. 2021;85:106023.
  • Sun W, Wang N, Li J, et al. Humidity-resistant triboelectric nanogenerator and its applications in wind energy harvesting and self-powered cathodic protection. Electrochim Acta. 2021;391:138994.
  • Luo N, Feng Y, Li X, et al. Manipulating electrical properties of silica-based materials via atomic oxygen irradiation. ACS Appl Mater Interfaces. 2021;13:15344–15352.
  • Wang N, Zheng Y, Feng Y, et al. New starch capsules with antistatic, anti-wear and superlubricity properties. Front Mater Sci. 2021;15:266–279.
  • Xu G, Zheng Y, Feng Y, et al. A triboelectric/electromagnetic hybrid generator for efficient wind energy collection and power supply for electronic devices. Science China Technol Sci. 2021;64:2003–2011.
  • Li T, Dong C, Liu Y, et al. An anodized titanium/sol-gel composite coating with self-healable superhydrophobic and oleophobic property. Front Mater. 2021;8:618674.
  • Feng Y, Benassi E, Zhang L, et al. Concealed wireless warning sensor based on triboelectrification and human-plant interactive induction. Research (Wash D C. 2021: 9870936.
  • Liu Y, Zheng Y, Wu Z, et al. Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing. Nano Energy. 2021;79:105422.
  • Sun X, Feng Y, Wang B, et al. A new method for the electrostatic manipulation of droplet movement by triboelectric nanogenerator. Nano Energy. 2021;86:106115.
  • Li X, Zhang L, Feng Y, et al. Reversible temperature-sensitive liquid–solid triboelectrification with polycaprolactone material for wetting monitoring and temperature sensing. Adv Funct Mater. 2021;31:202010220.
  • Wen J, Chen B, Tang W, et al. Harsh-environmental-resistant triboelectric nanogenerator and its applications in autodrive safety warning. Adv Energy Mater. 2018;8:1801898.
  • Jie Y, Jia X, Zou J, et al. Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv Energy Mater. 2018;8:1703133.
  • He S, Yu Z, Zhou H, et al. Polymer tubes as carrier boats of thermosetting and powder materials based on 3D printing for triboelectric nanogenerator with microstructure. Nano Energy. 2018;52:134–141.
  • Parida K, Xiong J, Zhou X, et al. Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility. Nano Energy. 2019;59:237–257.
  • Chen B, Tang W, Jiang T, et al. Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy. 2018;45:380–389.
  • Gao S, Chen Y, Su J, et al. Triboelectric nanogenerator powered electrochemical degradation of organic pollutant using Pt-free carbon materials. ACS Nano. 2017;11:3965–3972.
  • Hajra S, Vivekananthan V, Sahu M, et al. Triboelectric nanogenerator using multiferroic materials: an approach for energy harvesting and self-powered magnetic field detection. Nano Energy. 2021;85:105964.
  • Yang J-R, Lee C-J, Chang C-Y. An electrostatically self-assembled fluorinated molecule as a surface modification layer for a high-performance and stable triboelectric nanogenerator. J Mater Chem A. 2021;9:4230–4239.
  • Wang S, Zi Y, Zhou YS, et al. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J Mater Chem A. 2016;4:3728–3734.
  • Song G, Kim Y, Yu S, et al. Molecularly engineered surface triboelectric nanogenerator by self-assembled monolayers (METS). Chem Mater. 2015;27:4749–4755.
  • Park C, Song G, Cho SM, et al. Supramolecular-assembled nanoporous film with switchable metal salts for a triboelectric nanogenerator. Adv Funct Mater. 2017;27:1701367.
  • Kim KN, Jung YK, Chun J, et al. Surface dipole enhanced instantaneous charge pair generation in triboelectric nanogenerator. Nano Energy. 2016;26:360–370.
  • Jeong CK, Baek KM, Niu S, et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014;14:7031–7038.
  • Dang C, Shao C, Liu H, et al. Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy. 2021: 106619.
  • Liu Y, Fu Q, Mo J, et al. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy. 2021;89:106369.
  • Kim Y, Lee D, Seong J, et al. Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy. 2021;84:105925.
  • Charoonsuk T, Pongampai S, Pakawanit P, et al. Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: influence of morphology and molecular structure. Nano Energy. 2021;89:106430.
  • Zhang J-H, Li Y, Du J, et al. Bio-inspired hydrophobic/cancellous/hydrophilic trimurti PVDF mat-based wearable triboelectric nanogenerator designed by self-assembly of electro-pore-creating. Nano Energy. 2019;61:486–495.
  • Saadatnia Z, Esmailzadeh E, Naguib HE. High performance triboelectric nanogenerator by hot embossing on self-assembled micro-particles. Adv Eng Mater. 2019;21:1700957.
  • Zhang H, Li Y, Du J, et al. A high-power wearable triboelectric nanogenerator prepared from self-assembled electrospun poly (vinylidene fluoride) fibers with a heart-like structure. J Mater Chem A. 2019;7:11724–11733.
  • Wang N, Liu Y, Wu Y, et al. A β-cyclodextrin enhanced polyethylene terephthalate film with improved contact charging ability in a high humidity environment. Nanoscale Advances. 2021;3:6063–6073.
  • Roy S, Ko H-U, Maji PK, et al. Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chem Eng J. 2020;385:123723.
  • Yao C, Yin X, Yu Y, et al. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv Funct Mater. 2017;27:1700794.
  • Shang W, Gu GQ, Yang F, et al. A sliding-mode triboelectric nanogenerator with chemical group grated structure by shadow mask reactive ion etching. ACS Nano. 2017;11:8796–8803.
  • Zhou Q, Pan J, Deng S, et al. Triboelectric nanogenerator-based sensor systems for chemical or biological detection. Adv Mater. 2021;33:2008276.
  • Nie S, Fu Q, Lin X, et al. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem Eng J. 2021;404:126512.
  • Jiang P, Zhang L, Guo H, et al. Signal output of triboelectric nanogenerator at oil–water–solid multiphase interfaces and its application for dual-signal chemical sensing. Adv Mater. 2019;31:1902793.
  • Guo H, Li T, Cao X, et al. Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano. 2017;11:856–864.
  • Gao S, Wang M, Chen Y, et al. An advanced electro-fenton degradation system with triboelectric nanogenerator as electric supply and biomass-derived carbon materials as cathode catalyst. Nano Energy. 2018;45:21–27.
  • Harnchana V, Ngoc HV, He W, et al. Enhanced power output of a triboelectric nanogenerator using poly (dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate. ACS Appl Mater Interfaces. 2018;10:25263–25272.
  • Cui X, Zhao T, Yang S, et al. A spongy electrode-brush-structured dual-mode triboelectric nanogenerator for harvesting mechanical energy and self-powered trajectory tracking. Nano Energy. 2020;78:105381.
  • Zhang C, Lin X, Zhang N, et al. Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy. 2019;66:104126.
  • Jiang Q, Chen B, Zhang K, et al. Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit. ACS Appl Mater Interfaces. 2017;9:43716–43723.
  • Wang H, Sakamoto H, Asai H, et al. An all-fibrous triboelectric nanogenerator with enhanced outputs depended on the polystyrene charge storage layer. Nano Energy. 2021;90:106515.
  • Du J, Duan J, Yang X, et al. Charge boosting and storage by tailoring rhombus all-inorganic perovskite nanoarrays for robust triboelectric nanogenerators. Nano Energy. 2020;74:104845.
  • Xia K, Tang H, Fu J, et al. A high strength triboelectric nanogenerator based on rigid-flexible coupling design for energy storage system. Nano Energy. 2020;67:104259.
  • Pu X, Li L, Song H, et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater. 2015;27:2472–2478.
  • Xia K, Tian Y, Fu J, et al. Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems. Nano Energy. 2021;87:106210.
  • Wu H, Wang S, Wang Z, et al. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat Commun. 2021;12:1–8.
  • Li S, Zhang D, Meng X, et al. A flexible lithium-ion battery with quasi-solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator. Energy Storage Materials. 2018;12:17–22.
  • Jin L, Xiao X, Deng W, et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020;20:6404–6411.
  • Han Y, Wang W, Zou J, et al. Self-powered energy conversion and energy storage system based on triboelectric nanogenerator. Nano Energy. 2020;76:105008.
  • Fu S, He W, Tang Q, et al. Ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switch and charge excitation. Adv Mater. 2021: 2105882.
  • Chen G, Xu L, Zhang P, et al. Seawater degradable triboelectric nanogenerators for blue energy. Adv Mater Tech. 2020: 202000455.
  • Xiong J, Cui P, Chen X, et al. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat Commun. 2018;9:4280.
  • Wang N, Pu M, Ma Z, et al. Control of triboelectricity by mechanoluminescence in ZnS/Mn-containing polymer films. Nano Energy. 2021;90:106646.
  • Jin Y, Xu W, Zhang H, et al. Complete prevention of contact electrification by molecular engineering. Matte. 2021;4:290–301.
  • Chen H, Xu Y, Bai L, et al. Crumpled graphene triboelectric nanogenerators: smaller devices with higher output performance. Adv Mater Tech. 2017;2:201700044.
  • Uzun S, Seyedin S, Stoltzfus AL, et al. Knittable and washable Multifunctional MXene-coated cellulose yarns. Adv Funct Mater. 2019;29:201905015.
  • Feng P Y, Xia Z, Sun B, et al. Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification. ACS Appl Mater Interfaces. 2021;13:16916–16927.
  • Feng Y, Zhang L, Zheng Y, et al. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy. 2019;55:260–268.
  • Liu F, Liu Y, Lu Y, et al. Electrical analysis of triboelectric nanogenerator for high voltage applications exampled by DBD microplasma. Nano Energy. 2019;56:482–493.
  • Wan J, Wang H, Miao L, et al. A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing. Nano Energy. 2020;74:104878.
  • Zhang X-S, Han M-D, Wang R-X, et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013;13:1168–1172.
  • Sun J-G, Yang TN, Kuo I-S, et al. A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications. Nano Energy. 2017;32:180–186.
  • Zhang B, Zhang L, Deng W, et al. Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano. 2017;11:7440–7446.
  • Liu W, Wang Z, Wang G, et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat Commun. 2020;11:1–10.
  • Ma M, Kang Z, Liao Q, et al. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018;11:2951–2969.
  • Zi Y, Guo H, Wen Z, et al. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano. 2016;10:4797–4805.
  • Kim W-G, Kim D-W, Tcho I-W, et al. Triboelectric nanogenerator: structure, mechanism, and applications. ACS Nano. 2021;15:258–287.
  • Zhu G, Peng B, Chen J, et al. Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy. 2015;14:126–138.
  • Ma M, Liao Q, Zhang G, et al. Self-recovering triboelectric nanogenerator as active Multifunctional sensors. Adv Funct Mater. 2015;25:6489–6494.
  • Niu S, Zhou YS, Wang S, et al. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy. 2014;8:150–156.
  • Khandelwal G, Raj NPMJ, Kim S-J. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today. 2020;33:100882.
  • Rasel M S, Maharjan P, Salauddin M, et al. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy. 2018;49:603–613.
  • Liu W, Wang Z, Wang G, et al. Integrated charge excitation triboelectric nanogenerator. Nat Commun. 2019;10:1–9.
  • Bera B. Literature review on triboelectric nanogenerator. Imperial J Interdiscipl Res (IJIR). 2016; 2: 1263-1271.
  • Qiu C, Wu F, Shi Q, et al. Sensors and control interface methods based on triboelectric nanogenerator in IoT applications. IEEE Access. 2019;7:92745–92757.
  • Jiang B, Long Y, Pu X, et al. A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator. Nano Energy. 2021;86:106086.
  • Wang Y, Yang Y, Wang ZL. Triboelectric nanogenerators as flexible power sources. Flexible Electron. 2017;1:1–10.
  • Wang S, Niu S, Yang J, et al. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano. 2014;8:12004–12013.
  • Xu S, Zhang L, Ding W, et al. Self-doubled-rectification of triboelectric nanogenerator. Nano Energy. 2019;66:104165.
  • Chen X, Xie X, Liu Y, et al. Advances in healthcare electronics enabled by triboelectric nanogenerators. Adv Funct Mater. 2020;30:2004673.
  • Zhang S, Bick M, Xiao X, et al. Leveraging triboelectric nanogenerators for bioengineering. Matter. 2021;4:845–887.
  • Xia X, Liu Q, Zhu Y, et al. Recent advances of triboelectric nanogenerator based applications in biomedical systems. EcoMat. 2020;2:e12049.
  • Zhang B, Chen J, Jin L, et al. Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano. 2016;10:6241–6247.
  • Jao Y-T, Yang P-K, Chiu C-M, et al. A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy. 2018;50:513–520.
  • Yu A, Pu X, Wen R, et al. Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano. 2017;11:12764–12771.
  • Lee K Y, Chun J, Lee J H, et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv Mater. 2014;26:5037–5042.
  • Xing F, Jie Y, Cao X, et al. Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy. Nano Energy. 2017;42:138–142.
  • Lee W, Lee J. Development of a compact thermoelectric generator consisting of printed circuit heat exchangers. Energy Convers Manage. 2018;171:1302–1310.
  • Lim K-W, Peddigari M, Park CH, et al. A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ Sci. 2019;12:666–674.
  • Choi J, Jung Y, Dun C, et al. High-performance, wearable thermoelectric generator based on a highly aligned carbon nanotube sheet. ACS Appl Energy Mater. 2019;3:1199–1206.
  • Kwak M S, Lim K W, Lee HY, et al. Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale. 2021;13:8418–8424.
  • Lee HE, Park JH, Jang D, et al. Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy. 2020;75:104951.
  • Kim S-W, Yang UJ, Lee JW, et al. Triboelectric charge-driven enhancement of the output voltage of BiSbTe-based thermoelectric generators. ACS Energy Lett. 2021;6:1095–1103.