33,908
Views
93
CrossRef citations to date
0
Altmetric
Perspective Piece

Nanomaterials by severe plastic deformation: review of historical developments and recent advances

ORCID Icon, ORCID Icon, , ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , , ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, , , ORCID Icon, , ORCID Icon, , , , ORCID Icon, , , , , , , , , , , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 163-256 | Received 03 Dec 2021, Published online: 17 Feb 2022

References

  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189.
  • Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33–39.
  • Segal VM. Review: modes and processes of severe plastic deformation (SPD). Materials. 2018;11:1175.
  • Beloshenko V, Vozniak I, Beygelzimer Y, et al. Severe plastic deformation of polymers. Mater Trans. 2019;60:1192–1202.
  • Edalati K. Review on recent advancement in severe plastic deformation of oxides by high-pressure torsion (HPT). Adv Eng Mater. 2019;21:1800272.
  • Révész Á, Kovács Z. Severe plastic deformation of amorphous alloys. Mater Trans. 2019;60:1283–1293.
  • Gao Y, Ma Y, An Q, et al. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K. Carbon. 2019;146:364–368.
  • Ikoma Y. Severe plastic deformation of semiconductor materials using high-pressure torsion. Mater Trans. 2019;60:1168–1176.
  • Edalati K. Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process. Mater Trans. 2019;60:1221–1229.
  • Durand-Charre M. La Microstructure des aciers et desfontes [Microstructure of steels and cast irons]. Paris: Gense et Interpretation Ed. SIRPE; 2003.
  • Lapérouse J. Metallurgy: early metallurgy in Mesopotamia. In: Selin H, editor. Encyclopaedia of the history of science, technology, and medicine in non-western cultures 2nd ed. Berlin: Springer-Verlag; 2008. p. 1632.
  • Durand-Charre M. Damascus and pattern-welded steels, forging blades since the iron age. Les Ulis: EDP Sciences; 2014.
  • Bridgman PW. Studies in large plastic flow and fracture. New York (NY): McGraw-Hill; 1952.
  • Erbel S. Mechanizm zmian własności metali poddanych wielkim odkształceniom [Mechanism of change of properties of metals subjected to large deformation]. Warszawa: Wydawnictwa PW; 1976.
  • Sevillano J G, van Houtte P, Aernoudt E. Large strain work hardening and textures. Prog Mater Sci. 1981;25:69–412.
  • Valiev RZ, Kaibyshev OA, Kuznetsov RI, et al. Low-temperature superplasticity of metallic materials. Dokl Akad Nauk SSSR. 1988;301:864–866.
  • Gore A. An inconvenient truth: the planetary emergency of global warming and what we can do about it. New York (NY): Rodale Press; 2006.
  • Horita Z, Edalati K. Severe plastic deformation for nanostructure controls. Mater Trans. 2020;61:2241–2247.
  • Bridgman PW. Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev. 1935;48:825–847.
  • Segal VM, Reznikov VI, Drobyshevskiy AE, et al. Plastic working of metals by simple shear. Russ Metall. 1981;1:99–105.
  • Saito Y, Tsuji N, Utsunomiya H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater. 1998;39:1221–1227.
  • Beygelzimer YY, Varyukhin VN, Synkov SG, et al. New techniques for accumulating large plastic deformations using hydroextrusion. Fizika and Tekhnika Vysokikh Davlenii. 1999;9:109–110.
  • Valiahmetov OR, Galeyev RM, Salishchev GA. Mechanical properties of VT 8 Ti-alloy of submicrocrystalline structure. Fiz Met Metalloved. 1990;10:204–206.
  • Wen M, Liu G, Gu JF, et al. Dislocation evolution in titanium during surface severe plastic deformation. Appl Surf Sci. 2009;255:6097–6102.
  • Sachse M, Knighton P. Damascus steel myth, history, technology, applications. 3rd ed. Stahleisen: Düsseldorf Verl; 2008.
  • Verhoeven JD. The mystery of Damascus blades. Sci Am. 2001;284:74–79.
  • Reibold M, Paufler P, Levin AA, et al. Carbon nanotubes in an ancient Damascus sabre. Nature. 2006;444:286.
  • Sanderson K. Sharpest cut from nanotube sword. Nature. 2006. https://doi.org/https://doi.org/10.1038/news061113-11.
  • Hjardar K, Vike V. Vikings at war. Oxford: Casemate Publishers; 2016.
  • Fedrigo A, Grazzi F, Williams AR, et al. Extraction of archaeological information from metallic artefacts - a neutron diffraction study on Viking swords. J Archaeol Sci Rep. 2017;12:425–436.
  • Sherby OD, Wadsworth J. Damascus steels. Sci Am. 1985;252:112–121.
  • Wang JT. Historic retrospection and present status of severe plastic deformation in China. Mater Sci Forum. 2006;503-504:363–370.
  • Weber M, Banaschak S, Rothschild MA. Sharp force trauma with two katana swords: identifying the murder weapon by comparing tool marks on the skull bone. Int J Legal Med. 2021;135:313–322.
  • http://www.city.sakurai.lg.jp/yamato-travel/destination/area01/spot07/.
  • Wadsworth J. Archeometallurgy related to swords. Mater Charact. 2015;99:1–7.
  • Roberts WL. Cold rolling of steel. New York, Basel: Marcel Dekker Inc.; 1978.
  • Benjamin EO. Rubber products and method of making the same. US Patent 1,409,275. 1922.
  • Benjamin EO. Soft rubber product and method of making it. US Patent 1,493,062. 1924.
  • Delbert MC, Heights N. Laminar electrode including hydrophobic and hydrophilic layers; methods of making; fuel cell therewith; and method of using fuel cell. US Patent 3,457,113. 1969.
  • Bice HC, Bro MI, Dalton JR. Propellant grain with alternation layers of encapsulated fuel and oxidizer. US Patent 3,995,559. 1976.
  • Avery DH, Backofen WA. A structural basis for superplasticity. Trans ASM. 1965;58:551–562.
  • Przybysz JX, Ginsberg DM. Electronic thermal conductivity of superconducting lead-manganese and indium-manganese alloy films. Phys Rev B. 1976;14:1039–1044.
  • Mrstik BJ, Ginsberg DM. Electron thermal conductivity of superconducting films of indium-gadolinium and lead-gadolinium alloys. Phys Rev B. 1973;7:4844–4850.
  • Miura I. Introduction to the foil metallurgy; 1966.
  • Kikuchi S, Kuwahara H, Mazaki N, et al. Mechanical properties of Ag-Ni super-laminates produced by rolling. Mater Sci Eng A. 1997;234-236:1114–1117.
  • Metenier P, González-Doncel G, Ruano OA, et al. Superplastic behavior of a fine-grained two-phase Mg-9wt.%Li alloy. Mater Sci Eng A. 1990;125:195–202.
  • Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A. 2016;652:325–352.
  • Smithsonian Institution Archives, Image # SIA2008-0025.
  • Bridgman PW. Shearing phenomena at high pressures, particularly in inorganic compounds. Proc Am Acad Arts Sci. 1937;71:387–460.
  • Bridgman PW. Flow phenomena in heavily stressed metals. J Appl Phys. 1937;8:328–336.
  • Larsen ES, Bridgman PW. Shearing experiments on some selected minerals and mineral combinations. Am J Sci. 1938;36:81–94.
  • Bridgman PW. The effect of pressure on several properties of the alloys of bismuth-tin and of bismuth-cadmium. Proc Am Acad Arts Sci. 1953;82:101–156.
  • Bridgman PW. Shearing phenomena at high pressure of possible importance for geology. J Geol. 1936;44:653–669.
  • Boyd J, Robertson BP. The friction properties of various lubricants at high pressures. Trans ASME. 1945;67:51–59.
  • Vereshchagin FL, Shapochkin VA. Effect of hydrostatic pressure on the shear stress in solid state. Fiz Met Metalloved. 1960;9:258–264.
  • Griggs DT, Turner EJ, Heard HC. Deformation of rocks at 500°C to 800°C. Geol Soc Am Mere. 1960;79:39–104.
  • Riecker RE. New shear apparatus for temperatures of 1000°C and pressures of 50 kilobars. Rev Sci Instrum. 1964;35:596–599.
  • Abey AE, Stromberg HD. 70 kilobar shear apparatus. Rev Sci Instrum. 1969;40:557–559.
  • Aksenenkov VV, Blank VD, Konyayev YS, et al. Investigation of phase equilibria in a diamond chamber for shear at pressures up to 25.0 GPa. Phys Met Metallogr. 1984;57:159–162.
  • Paterson MS, Olgaard DL. Rock deformation tests to large shear strains in torsion. J Struct Geol. 2000;22:1341–1358.
  • Jesser WA, Kuhlmann-Wilsdorf D. The flow stress and dislocation structure of nickel deformed at very high pressure. Mater Sci Eng. 1972;9:111–117.
  • Erbel S. Mechanical properties and structure of extremely strain-hardened copper. Met Technol. 1979;6:482–486.
  • Saunders I, Nutting J. Deformation of metals to high strains using combination of torsion and compression. Met Sci. 1984;18:571–575.
  • Zhorin VA, Shashkin DP, Enikolopian NS. Dynamics of solid solution formation in Cu-Ni mixture under plastic flow at high pressure. Phys Stat Sol A. 1985;8:437–442.
  • Smirnova NA, Levit VI, Pilyugin VI, et al. Evolution of structure of fcc. sigle crystals during storing plastic deformation. Phys Met Metallogr. 1986;61:127–134.
  • Smirnova NA, Levit VI, Pilyugin VI, et al. Low temperature recrystallization of nickel and copper. Phys Met Metallogr. 1986;62:140–144.
  • Davudova LS, Degtiarev MV, Kuznetsov VI. Structure and properties of martensite structural steels under different straining. Phys Met Metallogr. 1986;61:339–347.
  • Teplov VA, Pilugin VP, Kuznetsov VI. Phase f.c.c.-b.c.c. transition induced steady deformation under pressure in iron-nickel alloys. Phys Met Metallogr. 1987;64:93–100.
  • Gil Sevillano J, Aernoudt E. Low energy dislocation structures in highly deformed materials. Mater Sci Eng. 1987;86:35–51.
  • Aleksandrova MM, Blank VD, Golobokov AE, et al. Amorphisation of gallium antimonide under the conditions of shear deformation under pressure. Phys Stat Sol A. 1988;105:K29–K32.
  • Teplov VA, Korshunov LG, Shabashov VA, et al. Structural transformations of high-manganese austenitic steels during deformation by shear under pressure. Phys Met Metallogr. 1988;66:135–143.
  • Ivanov E, Neverov V, Jitnikov N, et al. Nucleation of phases in Ni-Al deformed in Bridgman anvils. Mater Lett. 1988;7:57–60.
  • Valiev RZ, Mulyukov RR, Ovchinnikov VV. Direction of grain-boundary phase in submicrometre-grained iron. Philos Mag Lett. 1990;62:253–256.
  • Abdulov RZ, Valiev RZ, Krasilnikov NA. Formation of submicrometre-grained structure in magnesium alloy due to high plastic strains. J Mater Sci Lett. 1990;9:1445–1447.
  • Valiev RZ, Krasilnikov NA, Tsenev NK. Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng A. 1991;137:35–40.
  • Toews PJ. Doughnut machine. US Patent 2,207,560. 1940.
  • Fisch RA. Curved extrusion process and apparatus. US Patent 2,728,104. 1955.
  • Nolf CA. Spiral extrusion. US Patent 2,859,869. 1958.
  • Aitchison L. A history of metals. London: Macdonald & Evans; 1960.
  • Wright RN. Wire technology: process engineering and metallurgy. New York: Butterworth-Heinemann; 2014.
  • Rigney DA. Dislocation content at large plastic strains. Scr Metall. 1979;13:353–354.
  • Nutting J. Some aspects of structure property relationships in materials. In: Thomas G, Fulrath RM, Fisher RM, editors. Proceedings of the Electron Microscopy and Structure of Materials. Berkeley: University of California Press; 1971. p. 617–636.
  • Segal VM. Methods of stress-strain analyses in metal forming [dissertation]. Minsk: Physical Technical Institute Academy of Sciences of Buelorussia;1974.
  • Segal VM. Materials preparation for following processing. USSR Invention Certificate 575,892. 1977.
  • Kopylov VI, Segal VM. A device for continuous pressing of metals. USSR Invention Certificate 575,151. 1977.
  • Segal VM, Reznikov VI, Kopylov VI, et al. Processes of plastic structure formation in metals. Minsk: Nauka I Tehnika; 1994.
  • Segal VM. Materials processing by simple shear. Mater Sci Eng A. 1995;197:157–164.
  • Iwahashi Y, Wang J, Horita Z, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater. 1996;35:143–146.
  • Rigney DA, Naylor MGS, Divakar R, et al. Low energy dislocation structures caused by sliding and by particle impact. Mater Sci Eng. 1986;81:409–425.
  • Kuo SM, Rigney DA. Sliding behavior of aluminum. Mater Sci Eng A. 1992;157:131–143.
  • Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J Mater Sci Technol. 1999;15:193–197.
  • Bryła K, Edalati K. Historical studies by polish scientist on ultrafine-grained materials by severe plastic deformation. Mater Trans. 2019;60:1553–1560.
  • Wilde G, Ribbe J, Reglitz G, et al. Plasticity and grain boundary diffusion at small grain sizes. Adv Eng Mater. 2010;12:758–764.
  • Kawasaki M, Figueiredo RB, Langdon TG. An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. Acta Mater. 2011;59:308–316.
  • Edalati K, Cubero-Sesin JM, Alhamidi A, et al. Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: investigation using high-pressure torsion. Mater Sci Eng A. 2014;613:103–110.
  • Chinh NQ, Szommer P, Horita Z, et al. Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv Mater. 2006;18:34–39.
  • Schwartz AJ, Kumar M, Adams BL, et al. Electron backscatter diffraction in materials science. 2nd ed Boston: Springer; 2009.
  • Chen YJ, Hjelen J, Roven HJ. Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: sample preparation, parameters optimization and analysis. Trans Nonferrous Met Soc China. 2012;22:1801–1809.
  • Pippan R, Scheriau S, Taylor A, et al. Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Res. 2010;40:319–343.
  • Meyers MA, Mishra A, Benson DJ. The deformation physics of nanocrystalline metals: experiments, analysis, and computations. JOM. 2006;58:41–48.
  • Popov VV, Stolbovkiy AV, Popova EN, et al. Structure and thermal stability of Cu after severe plastic deformation. Defect Diffus Forum. 2010;297-301:1312–1321.
  • Edalati K, Hashiguchi Y, Iwaoka H, et al. Long-time stability of metals after severe plastic deformation: softening and hardening by self-annealing vursus thermal stability. Mater Sci Eng A. 2018;729:340–348.
  • Kwon YJ, Shigematsu I, Saito N. Production of ultra-fine grained aluminum alloy by friction stir process. J Jpn Inst Met. 2002;66:1325–1332.
  • Huang JY, Zhu YT, Jiang HG, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 2001;49:1497–1505.
  • Kurzydlowski KJ. Hydrostatic extrusion as a method of grain refinement in metallic materials. Mater Sci Forum. 2006;503-504:341–348.
  • Richert J, Richert M, Zasadziński A, et al. A method of plastic processing of metals and alloys and a device for plastic processing of metals and alloys. PL Patent 123,026. 1979.
  • Korbel A, Bochniak W. Method of plastic forming of materials. US Patent 5,737,959. 1998.
  • Shin DH, Park JJ, Kim YS, et al. Constrained groove pressing and its application to grain refinement of aluminum. Mater Sci Eng A. 2002;328:98–103.
  • Fujioka T, Horita Z. Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater Trans. 2009;50:930–933.
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61:782–817.
  • Faraji G, Torabzadeh H. An overview on the continuous severe plastic deformation methods. Mater Trans. 2019;60:1316–1330.
  • Lowe TC, Valiev RZ, Li X, et al. Commercialization of bulk nanostructured metals and alloys. MRS Bull. 2021;46:265–272.
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979.
  • Edalati K, Uehiro R, Fujiwara K, et al. Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems. Mater Sci Eng A. 2017;701:158–166.
  • Blank VD, Popov MY, Kulnitskiy BA. The effect of severe plastic deformations on phase transitions and structure of solids. Mater Trans. 2019;60:1500–1505.
  • Xu C, Horita Z, Langdon TG. The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Mater. 2008;56:5168–5176.
  • Pereira PHR, Figueiredo RB. Finite element modelling of high-pressure torsion: an overview. Mater Trans. 2019;60:1139–1150.
  • Edalati K, Lee DJ, Nagaoka T, et al. Real hydrostatic pressure in high-pressure torsion measured by bismuth phase transformations and FEM simulations. Mater Trans. 2016;57:533–538.
  • Figueiredo RB, Cetlin PR, Langdon TG. Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng A. 2011;528:8198–8204.
  • Kim HS. Finite element analysis of high-pressure torsion processing. J Mater Process Technol. 2001;113:617–621.
  • Kamrani M, Levitas VI, Feng B. FEM simulation of large deformation of copper in the quasi-constrain high-pressure-torsion setup. Mater Sci Eng A. 2017;705:219–230.
  • Hohenwarter A, Pippan R. Sample size and strain-rate-sensitivity effects on the homogeneity of high-pressure torsion deformed disks. Metall Mater Trans A. 2019;50:601–608.
  • Sakai G, Nakamura K, Horita Z, et al. Developing high-pressure torsion for use with bulk samples. Mater Sci Eng A. 2005;406:268–273.
  • Figueiredo RB, De Faria GCV, Cetlin P, et al. Three-dimensional analysis of plastic flow during high-pressure torsion. J Mater Sci. 2013;48:4524–4532.
  • Cao Y, Wang YB, Alhajeri SN, et al. A visualization of shear strain in processing by high-pressure torsion. J Mater Sci. 2010;45:765–770.
  • Cao Y, Kawasaki M, Wang YB, et al. Unusual macroscopic shearing patterns observed in metals processed by high-pressure torsion. J Mater Sci. 2010;45:4545–4553.
  • Cao Y, Wang YB, Figueiredo RB, et al. Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Mater. 2011;59:3903–3914.
  • Jiang W, Zhou H, Cao Y, et al. On the heterogeneity of local shear strain induced by high-pressure torsion. Adv Eng Mater. 2020;22:1900477.
  • Edalati K, Miresmaeili R, Horita Z, et al. Significance of temperature increase in processing by high-pressure torsion. Mater Sci Eng A. 2011;528:7301–7305.
  • Figueiredo RB, Pereira PHR, Aguilar MTP, et al. Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 2012;60:3190–3198.
  • Pereira PHR, Figueiredo RB, Huang Y, et al. Modeling the temperature rise in high-pressure torsion. Mater Sci Eng A. 2014;593:185–188.
  • Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–583.
  • Edalati K, Horita Z. Application of high-pressure torsion for consolidation of ceramic powders. Scr Mater. 2010;63:174–177.
  • Razavi-Khosroshah H, Fuji M. Development of metal oxide high-pressure phases for photocatalytic properties by severe plastic deformation. Mater Trans. 2019;60:1203–1208.
  • Edalati K, Horita Z. Scaling-up of high pressure torsion using ring shape. Mater Trans. 2009;50:92–95.
  • Edalati K, Horita Z. Continuous high-pressure torsion. J Mater Sci. 2010;45:4578–4582.
  • Edalati K, Lee S, Horita Z. Continuous high-pressure torsion using wires. J Mater Sci. 2012;47:473–478.
  • Hohenwarter A. Incremental high pressure torsion as a novel severe plastic deformation process: processing features and application to copper. Mater Sci Eng A. 2015;626:80–85.
  • Shigeno E, Komatsu T, Sumikawa K, et al. Combination of high-pressure torsion with incremental feeding for upsizing sample. Mater Trans. 2018;59:1009–1012.
  • Ivanisenko Y, Kulagin R, Fedorov V, et al. High pressure torsion extrusion as a new severe plastic deformation process. Mater Sci Eng A. 2016;664:247–256.
  • Takizawa Y, Sumikawa K, Watanabe K, et al. Incremental feeding high-pressure sliding for grain refinement of large-scale sheets: application to Inconel 718. Metall Mater Trans A. 2018;49:1830–1840.
  • Vu VQ, Toth LS, Beygelzimer Y, et al. Microstructure, texture and mechanical properties in aluminum produced by friction-assisted lateral extrusion. Materials. 2021;14:2465.
  • Horita Z, Tang Y, Masuda T, et al. Severe plastic deformation under high pressure: upsizing sample dimensions. Mater Trans. 2020;61:1177–1190.
  • Masuda T, Horita Z. Grain refinement of AZ31 and AZ61 Mg alloys through room temperature processing by up-scaled high-pressure torsion. Mater Trans. 2019;60:1104–1110.
  • Toth LS, Arzaghi M, Fundenberger JJ, et al. Severe plastic deformation of metals by high-pressure tube twisting. Scr Mater. 2009;60:175–177.
  • Bouaziz O, Estrin Y, Kim HS. A new technique for severe plastic deformation: the cone-cone method. Adv Eng Mater. 2009;11:982–985.
  • Pougis A, Toth LS, Bouaziz O, et al. Stress and strain gradients in high-pressure tube twisting. Scr Mater. 2012;66:773–776.
  • Wang JT, Li Z, Wang J, et al. Principles of severe plastic deformation using tube high-pressure shearing. Scr Mater. 2012;67:810–813.
  • Pougis A. Affinement de microstructures de métaux par des déformations plastiques extremes [dissertation]. Lorraine University; 2013.
  • Lapovok R, Qi Y, Ng HP, et al. Gradient structures in thin-walled metallic tubes produced by continuous high pressure tube shearing process. Adv Eng Mater. 2017;19:1700345.
  • Gu CF, Toth LS, Arzaghi M, et al. Effect of strain path on grain refinement in severely plastically deformed copper. Scr Mater. 2011;64:284–287.
  • Arzaghi M.  New severe plastic deformation process for tubes [dissertation]. Metz: Paul Verlain University; 2010.
  • Chen C. Textures and Microstructures in Al, Cu and Mg under Severe Plastic Deformation [dissertation]. France: Lorraine University; 2016.
  • Arzaghi M, Fundenberger JJ, Toth LS, et al. Microstructure, texture and mechanical properties of aluminum processed by high-pressure tube twisting. Acta Mater. 2012;60:4393–4408.
  • Li Z, Zhang PF, Yuan H, et al. Principle of one-step synthesis for multilayered structures using tube high-pressure shearing. Mater Sci Eng A. 2016;658:367–375.
  • Toth LS, Chen C, Pougis A, et al. High pressure tube twisting for producing ultra fine grained materials: a review. Mater Trans. 2019;60:1177–1191.
  • Blank VD, Konyaev YS, Kuznetsov AI, et al. Diamond chamber for examining the effects of shear deformation on the structure and properties of solids at pressures up to 43 GPa. Instrum Exper Tech New York. 1984;27:1240–1242.
  • Weir CE, Lippincott ER, Van Valkenburg A, et al. Infrared studies in the 1- to I5-micron region to 30,000 atmospheres. J Res Nat Bur Stand Sect A. 1959;63:55–62.
  • Blank VD, Churkin VD, Kulnitskiy BA, et al. Pressure-induced transformation of graphite and diamond to onions. Crystals. 2018;8:68.
  • Blank VD, Denisov VN, Kirichenko AN, et al. High pressure transformation of single-crystal graphite to form molecular carbon-onions. Nanotechnology. 2007;18:345601.
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981.
  • Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Prog Mater Sci. 2009;54:427–510.
  • Skrotzki W, Scheerbaum N, Oertel CG, et al. Microstructure and texture gradient in ECAP copper deformed by equal channel angular pressing. Acta Mater. 2007;55:2013–2024.
  • Skrotzki W, Scheerbaum N, Oertel CG, et al. Recrystallization of high-purity aluminum during equal channel angular pressing. Acta Mater. 2007;55:2211–2218.
  • Kang F, Wang JT, Su YL, et al. Finite element analysis of the effect of back pressure during equal channel angular pressing. J Mater Sci. 2007;42:1491–1500.
  • Frint S, Hockauf M, Frint P, et al. Scaling up segal’s principle of equal channel angular pressing. Mater Des. 2016;97:502–511.
  • Skrotzki W. Deformation heterogeneities in equal channel angular pressing. Mater Trans. 2019;60:1331–1343.
  • Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scr Mater. 1999;40:795–800.
  • Kamikawa N, Sakai T, Tsuji N. Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater. 2007;55:5873–5888.
  • Sato M, Tsuji N, Minamino Y, et al. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation. Sci. Technol. Adv Mater. 2004;5:145–152.
  • Tylecote RF. The solid phase welding of metals. London: Edward Arnold; 1968.
  • Lenard JG. Primer on fat rolling. Amsterdam: Elsevier; 2007. p. 252–267.
  • Tsuji N. Accumulative roll-bonding. In: Buschow KHT, Cahn RW, Flemings MC, et al, editors. Encyclopedia of materials: science & technology. Amsterdam: Elsevier; 2011. p. 1–8.
  • Sakai T, Saito Y, Hirano K, et al. Deformation and recrystallization behavior of low carbon steel in high speed hot rolling. ISIJ Int. 1988;28:1028–1035.
  • Lee SH, Saito Y, Tsuji N, et al. Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scr Mater. 2002;46:281–285.
  • Huang X, Tsuji N, Hansen N, et al. Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Mater Sci Eng A. 2003;340:265–271.
  • Tsuji N. Formation mechanisms of ultrafine grained structures in severe plastic deformation of metallic materials. Tetsu-to-Hagané. 2008;94:582–589.
  • Tsuji N, Gholizadeh R, Ueji R, et al. Formation mechanism of ultrafine grained microstructures: various possibilities for fabricating bulk nanostructured metals and alloys. Mater Trans. 2019;60:1518–1532.
  • Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr Mater. 2002;47:893–899.
  • Tsuji N, Okuno S, Koizumi Y, et al. Toughness of ultrafine grained ferritic steels fabricated by ARB and annealing process. Mater Trans. 2004;45:2272–2281.
  • Tsuji N. Unique mechanical properties of nanostructured metals. J Nanosci Nanotechnol. 2007;7:3765–3770.
  • Tsuji N. Ways to manage both strength and ductility in nanostructured steels. In: Weng Y, Dong H, Gan Y, editors. Advanced steels, the recent scenario in steel science and technology. Berlin/Heidelberg: Springer-Verlag/Metallurgical Industry Press; 2011. p. 119–130.
  • Ohsaki S, Kato S, Tsuji N, et al. Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Mater. 2007;55:2885–2895.
  • Chen MC, Hsieh HC, Wu W. The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite. J Alloys Compd. 2006;416:169–172.
  • Quadir MZ, Al-Buhamad O, Lau KD, et al. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets. Int J Mater Res. 2009;100:1705–1714.
  • Wu K, Chang H, Maawad E, et al. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Mater Sci Eng A. 2010;527:3073–3078.
  • Chekhonin P, Beausir B, Scharnweber J, et al. Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates. Acta Mater. 2012;60:4661–4671.
  • Beyerlein IJ, Mara NA, Carpenter JS, et al. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation. J Mater Res. 2013;28:1799–1812.
  • Chekhonin P, Scharnweber J, Scharnweber M, et al. Mechanical properties of aluminium laminates produced by accumulative roll bonding. Cryst Res Technol. 2013;48:532–537.
  • Koseki T, Inoue J, Nambu S. Development of multilayer steels for improved combinations of high strength and high ductility. Mater Trans. 2014;55:227–237.
  • Quadir MZ, Najafzadeh N, Munroe PR. Variations in through-thickness recrystallization and grain growth textures in the Al layers in ARB-processed Al/Al(0.3% Sc) composite sheets. Mater Des. 2016;93:467–473.
  • Ebrahimi SHS, Dehghani K, Aghazadeh J, et al. Investigation on microstructure and mechanical properties of Al/Al-Zn-Mg-Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater Sci Eng A. 2018;718:311–320.
  • Höppel HW, Westermeyer M, Kümmel F, et al. The role of interfaces on the deformation mechanisms in bimodal Al laminates produced by accumulative roll bonding. Adv Eng Mater. 2020;22:2000145.
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31.
  • Tsuji N. New routes for fabricating ultrafine-grained microstructures in bulky sheets without very-high strains. Adv Eng Mater. 2010;12:701–707.
  • Tekko Shinbun, Newspaper, Japan. 2008 May 26.
  • Beygelzimer Y, Orlov D, Varyukhin V. A new severe plastic deformation method: twist extrusion. In: Zhu YT, Langdon TG, Mishra RS, et al, editors. Seattle (WA): TMS Annual Meeting; 2002; p. 297–304.
  • Beygelzimer Y, Varyukhin V, Orlov D, et al Microstructural evolution of titanium under twist extrusion. In: Zhu Y, Langdon T, Mishra R, et al, editors. Seattle (WA): TMS Annual Meeting; 2002; p. 43–46.
  • Beygelzimer Y, Varyukhin V, Orlov D, et al. Twist extrusion-process for strain accumulation. Donetsk: TEAN; 2003.
  • Beygelzimer Y, Kulagin R, Estrin Y, et al. Twist extrusion as a potent tool for obtaining advanced engineering materials: a review. Adv Eng Mater. 2017;19:1600873.
  • Bagherpour E, Pardis N, Reihanian M, et al. An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications. Int J Adv Manuf Technol. 2019;100:1647–1694.
  • Yalçinkaya T, Şimşek Ü, Miyamoto H, et al. Numerical analysis of a new nonlinear twist extrusion process. Metals. 2019;9:513.
  • Macháčková A. Decade of twist channel angular pressing: a review. Materials. 2020;13:1725.
  • Joudaki J, Safari M, Alhosseini SM. New die design configuration for grain refinement by hollow twist extrusion (HTE) process. Met Mater Int. 2021;27:667–675.
  • Fouad DM, El-Garaihy WH, Ahmed MMZ, et al. Grain structure evolution and mechanical properties of multi-channel spiral twist extruded AA5083. Metals. 2021;11:1276.
  • Özbeyaz K, Kaya H, Kentli A. Novel SPD method: twisted variable channel angular extrusion. Met Mater Int. 2022. Forthcoming. doi:https://doi.org/10.1007/s12540-021-01086-4
  • Wang C, Li F, Li Q, et al. A novel severe plastic deformation method for fabricating ultrafine grained pure copper. Mater Des. 2013;43:492–498.
  • Beygelzimer Y, Kulagin R, Latypov MI, et al. Off-axis twist extrusion for uniform processing of round bars. Met Mater Int. 2015;21:734–740.
  • Segal VM. Severe plastic deformation: simple shear versus pure shear. Mater Sci Eng A. 2002;338:331–344.
  • Beygelzimer Y. Vortices and mixing in metals during severe plastic deformation. Mater Sci Forum. 2011;683:213–224.
  • Nouri M, Mohammadian Semnani H, Emadoddin E. Computational and experimental studies on the effect back pressure on twist extrusion process. Met Mater Int. 2021;27:2910–2918.
  • Beygelzimer Y, Varyukhin V, Synkov S. Shear, vortices, and mixing during twist extrusion. Int J Mater Form. 2008;1:443–446.
  • Kulagin R, Latypov M, Kim HS, et al. Cross flow during twist extrusion: theory, experiment, and application. Metall Mater Trans A. 2013;44:3211–3220.
  • Beygelzimer Y, Varyukhin V, Kulagin R, et al. Twist extrusion in severe plastic deformation technology. In: Rosochowski A, Scotland: Whittles Publishing; 2017. p. 202–234.
  • Beygelzimer YE, Pavlenko DV, Synkov OS, et al. The efficiency of twist extrusion for compaction of powder materials. Powder Metall Met Ceram. 2019;58:7–12.
  • Boguslaev VA, Kotsyuba V, Pavlenko DV. Modernisation of press equipment for realisation of severe plastic deformation technology for aviation alloys. Technol Syst. 2017;4:7–14.
  • Pavlenko DV, Tkach DV, Kotsyuba VY, et al. Analysis of submicrocrystalline structure formation conditions in iron-nickel alloys with helical extrusion. Met Sci Heat Treat. 2017;59:272–277.
  • Beygelzimer Y, Estrin Y, Kulagin R. Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing. Adv Eng Mater. 2015;17:1853–1861.
  • Prokofeva OV, Beigelzimer YE, Kulagin RY, et al. Producing of ultrafine grained composites with a large uniform elongation by twist extrusion: mathematical simulation. Russ Metall. 2017;3:226–230.
  • Prokofeva OV, Beygelzimer YY, Usov VV, et al. Formation of a gradient structure in a material by twist extrusion. Russ Metall. 2020;5:573–578.
  • Meyer GE, Henning HJ. Beryllium wrought products, defense metals information center. Battelle Memorial Institute; 1970.
  • Salishchev G, Zaripova R, Galeev R, et al. Nanocrystalline structure formation during severe plastic deformation in metals and their deformation behaviour. Nanostruct Mater. 1995;6:913–916.
  • Ghosh AK, Huang W. Severe deformation based process for grain subdivision and resulting microstructures. In: Lowe TC, Valiev RZ, editors. Investigations and applications of severe plastic deformation. Dordrecht: Springer; 2000. p. 29–36.
  • Belyakov A, Sakai T, Miura H. Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation. Mater Sci Eng A. 2001;319:867–871.
  • Sitdikov O, Sakai T, Goloborodko A, et al. Effect of pass strain on grain refinement in 7475 Al alloy during hot multidirectional forging. Mater Trans. 2004;45:2232–2238.
  • Bing L, Teng BG, Luo DG. Effects of passes on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy during multidirectional forging. Acta Metall Sin Engl Lett. 2018;31:1009–1018.
  • Lee JW, Park JJ. Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement. J Mater Process Technol. 2002;130-131:208–213.
  • Faraji G, Kim HS, Torabzadeh H. Severe plastic deformation: methods, processing and properties. Amsterdam: Elsevier; 2018.
  • Zhong HS ZY, Kim TH, Holm EA, et al. Effects of constraint and strain path on evolution of ultrafine grained microstructure by multi-axial alternative forging. Mater Sci Forum. 2005;475-479:3471–3474.
  • Montazeri-Pour M, Parsa MH, Khajezade A, et al. Multi-axial incremental forging and shearing as a new severe plastic deformation processing technique. Adv Eng Mater. 2015;17:1197–1207.
  • Huang H, Zhang J. Microstructure and mechanical properties of AZ31 magnesium alloy processed by multi-directional forging at different temperatures. Mater Sci Eng A. 2016;674:52–58.
  • Miura H, Iwama Y, Kobayashi M. Comparisons of microstructures and mechanical properties of heterogeneous nano-structure induced by heavy cold rolling and ultrafine-grained structure by multi-directional forging of Cu-Al alloy. Mater Trans. 2019;60:1111–1115.
  • Miura H, Kobayashi M, Aoba T, et al. An approach for room-temperature multi-directional forging of pure titanium for strengthening. Mater Sci Eng A. 2018;731:603–608.
  • Ito Y, Hoshi N, Hayakawa T, et al. Mechanical properties and biological responses of ultrafine-grained pure titanium fabricated by multi-directional forging. Mater Sci Eng B. 2019;245:30–36.
  • Eskandarzade M, Masoumi A, Faraji G, et al. A new designed incremental high pressure torsion process for producing long nanostructured rod samples. J Alloys Compd. 2017;695:1539–1546.
  • Faraji G, Kim HS. Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes. J Mater Sci Technol. 2017;33:905–923.
  • Samadpour F, Faraji G, Babaie P, et al. Hydrostatic cyclic expansion extrusion (HCEE) as a novel severe plastic deformation process for producing long nanostructured metals. Mater Sci Eng A. 2018;718:412–417.
  • Savarabadi MM, Faraji G, Zalnezhad E. Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. J Alloys Compd. 2019;785:163–168.
  • Chakkingal U, Suriadi AB, Thomson PF. Microstructure development during equal channel angular drawing of Al at room temperature. Scr Mater. 1998;39:677–684.
  • Chakkingal U, Suriadi AB, Thomson PF. The development of microstructure and the influence of processing route during equal channel angular drawing of pure aluminum. Mater Sci Eng A. 1999;266:241–249.
  • Pardis N, Chen C, Shahbaz M, et al. Development of new routes of severe plastic deformation through cyclic expansion-extrusion process. Mater Sci Eng A. 2014;613:357–364.
  • Raab GJ, Valiev RZ, Lowe TC, et al. Continuous processing of ultrafine grained Al by ECAP-conform. Mater Sci Eng A. 2004;382:30–34.
  • Lee JC, Seok HK, Han JH, et al. Controlling the textures of the metal strips via the continuous confined strip shearing (C2S2) process. Mater Res Bull. 2001;36:997–1004.
  • Utsunomiya H, Hatsuda K, Sakai T, et al. Continuous grain refinement of aluminum strip by conshearing. Mater Sci Eng A. 2004;372:199–206.
  • Faraji G, Kim HS, Kashi HT. Chapter 5, Severe plastic deformation for industrial applications. In: Faraji G, Kim HS, Kashi HT, editors. Severe plastic deformation. Amsterdam: Elsevier; 2018. p. 165–186.
  • Huang Y, Prangnell PB. Continuous frictional angular extrusion and its application in the production of ultrafine-grained sheet metals. Scr Mater. 2007;56:333–336.
  • Srinivasan R, Chaudhury P, Cherukuri B, et al. Continuous severe plastic deformation processing of aluminum alloys. Final Technical Report for DOE Award DE-FC36-01ID14022. Wright State University; 2006.
  • Takayama MYY, Tozawa T, Kato H, et al. Microstructural control by means of continuous cyclic bending in a 5083 aluminum alloy. In: Sakai T, Suzuki HG, editors. Proceedings of the Fourth International Conference on Recrystallization and Related Phenomena. Sendai: Japan Institute of Metals; 1999. p. 321–326.
  • Takayama Y, Miura T, Kato H, et al. Microstructural and textural evolution by continuous cyclic bending and annealing in a high purity titanium. Mater Trans. 2004;45:2826–2831.
  • Ji YH, Park JJ. Development of severe plastic deformation by various asymmetric rolling processes. Mater Sci Eng A. 2009;499:14–17.
  • Lee T, Park CH, Lee SY, et al. Mechanisms of tensile improvement in caliber-rolled high-carbon steel. Met Mater Int. 2012;18:391–396.
  • Mirsepasi A, Nili-Ahmadabadi M, Habibi-Parsa M, et al. Microstructure and mechanical behavior of martensitic steel severely deformed by the novel technique of repetitive corrugation and straightening by rolling. Mater Sci Eng A. 2012;551:32–39.
  • Todaka Y, Umemoto M, Koichi T. Comparison of nanocrystalline surface layer in steels formed by air blast and ultrasonic shot peening. Mater Trans. 2004;45:376–379.
  • Wang X, Li YS, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening. J Mater Sci Technol. 2017;33:758–761.
  • Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A. 2004;375-377:38–45.
  • Arifvianto B, Suyitno, Mahardika M, et al. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L. Mater Chem Phys. 2011;125:418–426.
  • Alikhani Chamgordani S, Miresmaeili R, Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP-Ti) by surface mechanical attrition treatment (SMAT). Tribol Int. 2018;119:744–752.
  • Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mater Sci Eng A. 2000;286:91–95.
  • Tang T, Gao Y, Yao L, et al. Development of high-performance energy absorption component based on the structural design and nanocrystallization. Mater Des. 2018;137:214–225.
  • Chan HL, Ruan HH, Chen AY, et al. Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment. Acta Mater. 2010;58:5086–5096.
  • Badreddine J, Rouhaud E, Micoulaut M, et al. Simulation of shot dynamics for ultrasonic shot peening: effects of process parameters. Int J Mech Sci. 2014;82:179–190.
  • Liu D, Liu DX, Zhang XH, et al. Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Mater Sci Eng A. 2018;726:69–81.
  • Wang ZB, Lu J, Lu K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 2015;87:150–160.
  • Mordyuk BN, Prokopenko GI. Ultrasonic impact peening for the surface properties’ management. J Sound Vib. 2007;308:855–866.
  • Liu RY, Yuan S, Lin NM, et al. Application of ultrasonic nanocrystal surface modification (UNSM) technique for surface strengthening of titanium and titanium alloys: a mini review. J Mater Res Technol. 2021;11:351–377.
  • Samih Y, Beausir B, Bolle B, et al. In-depth quantitative analysis of the microstructures produced by surface mechanical attrition treatment (SMAT). Mater Charact. 2013;83:129–138.
  • Proust G, Retraint D, Chemkhi M, et al. Electron backscatter diffraction and transmission Kikuchi diffraction analysis of an austenitic stainless steel subjected to surface mechanical attrition treatment and plasma nitriding. Microsc Microanal. 2015;21:919–926.
  • Liu W, Jin X, Zhang B, et al. A coupled EBSD/TEM analysis of the microstructure evolution of a gradient nanostructured ferritic/martensitic steel subjected to surface mechanical attrition treatment. Materials. 2019;12:140.
  • Sun Y. Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel. Tribol Int. 2013;57:67–75.
  • Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr Mater. 2006;54:1949–1954.
  • Chen XH, Lu J, Lu L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr Mater. 2005;52:1039–1044.
  • Wu XL, Yang MX, Yuan FP, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Mater. 2016;112:337–346.
  • Waltz L, Retraint D, Roos A, et al. Combination of surface nanocrystallization and co-rolling: creating multilayer nanocrystalline composites. Scr Mater. 2009;60:21–24.
  • Tao NR, Lu J, Lu K. Surface nanocrystallization by surface mechanical attrition treatment. Mater Sci Forum. 2008;579:91–108.
  • Bagheri S, Guagliano M. Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys. Surf Eng. 2009;25:3–14.
  • Azadmanjiri J, Berndt CC, Kapoor A, et al. Development of surface nano-crystallization in alloys by surface mechanical attrition treatment (SMAT). Crit Rev Solid State Mater Sci. 2015;40:164–181.
  • Grosdidier T, Novelli M. Recent developments in the application of surface mechanical attrition treatments for improved gradient structures: processing parameters and surface reactivity. Mater Trans. 2019;60:1344–1355.
  • Olugbade TO, Lu J. Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT). Nano Mater Sci. 2020;2:3–31.
  • Tong WP, Tao NR, Wang ZB, et al. Nitriding iron at lower temperature. Science. 2003;299:2002–2004.
  • Balusamy T, Narayanan TSNS, Ravichandran K. Effect of surface mechanical attrition treatment (SMAT) on boronizing of EN8 steel. Surf Coat Technol. 2012;213:221–228.
  • Si X, Lu B, Wang Z. Aluminizing low carbon steel at lower temperatures. J Mater Sci Technol. 2009;25:433–436.
  • Guo S, Wang ZB, Wang LM, et al. Lower temperature aluminizing behaviors of a ferritic-martensitic steel processed by means of surface mechanical attrition treatment. Surf Coat Technol. 2014;258:329–336.
  • Skripnyuk VM, Rabkin E, Estrin Y, et al. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) alloy. Acta Mater. 2004;52:405–414.
  • Huot J, Skryabina NY, Fruchart D. Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties. Metals. 2012;2:329–343.
  • Schlapbach L, Seiler A, Stucki F, et al. Surface effects and the formation of metal hydrides. J Less-Common Met. 1980;73:145–160.
  • Edalati K, Novelli M, Itano S, et al. Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys: investigation using ultrasonic SMAT and HPT processes. J Alloys Compd. 2018;737:337–346.
  • Novelli M, Edalati K, Itano S, et al. Microstructural details of hydrogen diffusion and storage in Ti-V-Cr alloys activated through surface and bulk severe plastic deformation. Int J Hydrogen Energy. 2020;45:5326–5336.
  • Ralston KD, Birbilis N. Effect of grain size on corrosion: a review. Corrosion. 2010;66:075005–075013.
  • Liu L, Li Y, Wang F. Electrochemical corrosion behavior of nanocrystalline materials-a review. J Mater Sci Technol. 2010;26:1–14.
  • Balusamy T, Narayanan TSNS, Ravichandran K, et al. Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel. Corros Sci. 2013;74:332–344.
  • Chen AY, Ruan HH, Wang J, et al. The influence of strain rate on the microstructure transition of 304 stainless steel. Acta Mater. 2011;59:3697–3709.
  • Gatey AM, Hosmani SS, Singh RP. Surface mechanical attrition treated AISI 304L steel: role of processing parameters. Surf Eng. 2016;32:69–78.
  • Darling KA, Tschopp MA, Roberts AJ, et al. Enhancing grain refinement in polycrystalline materials using surface mechanical attrition treatment at cryogenic temperatures. Scr Mater. 2013;69:461–464.
  • Shen Y, Wen C, Yang X, et al. Ultrahigh strength copper obtained by surface mechanical attrition treatment at cryogenic temperature. J Mater Eng Perform. 2015;24:5058–5064.
  • Cai B, Ma X, Moering J, et al. Enhanced mechanical properties in Cu-Zn alloys with a gradient structure by surface mechanical attrition treatment at cryogenic temperature. Mater Sci Eng A. 2015;626:144–149.
  • Sun L, Cai B, Wen C, et al. The role of temperature in the strengthening of Cu-Al alloys processed by surface mechanical attrition treatment. J Mater Res. 2015;30:1670–1677.
  • Murdoch H, Darling K, Roberts A, et al. Mechanical behavior of ultrafine gradient grain structures produced via ambient and cryogenic surface mechanical attrition treatment in iron. Metals. 2015;5:976–985.
  • Novelli M, Fundenberger JJ, Bocher P, et al. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature. Appl Surf Sci. 2016;389:1169–1174.
  • Novelli M, Bocher P, Grosdidier T. Effect of cryogenic temperatures and processing parameters on gradient-structure of a stainless steel treated by ultrasonic surface mechanical attrition treatment. Mater Charact. 2018;139:197–207.
  • Fabijanic D, Ralston KD, Birbilis N, et al. Influence of surface mechanical attrition treatment attrition media on the surface contamination and corrosion of magnesium. Corrosion. 2012;69:527–535.
  • Sun Q, Han Q, Liu X, et al. The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy. Surf Coat Technol. 2017;328:469–479.
  • Wen L, Wang Y, Zhou Y, et al. Iron-rich layer introduced by SMAT and its effect on corrosion resistance and wear behavior of 2024 Al alloy. Mater Chem Phys. 2011;126:301–309.
  • Wen L, Wang Y, Jin Y, et al. Comparison of corrosion behaviour of nanocrystalline 2024-T4 Al alloy processed by surface mechanical attrition treatment with two different mediums. Corros Eng Sci Technol. 2014;50:425–432.
  • Murdoch HA, Labukas JP, Roberts AJ, et al. Controlling surface chemistry to deconvolute corrosion benefits derived from SMAT processing. JOM. 2017;69:1170–1174.
  • Maurel P, Weiss L, Bochet P, et al. Oxide dependant wear mechanisms of titanium against a steel counterface: influence of SMAT nanostructured surface. Wear. 2019;430-431:245–255.
  • Gatey AM, Hosmani SS, Figueroa CA, et al. Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel. Surf Coat Technol. 2016;304:413–424.
  • Samih Y, Novelli M, Thiriet T, et al. Plastic deformation to enhance plasma-assisted nitriding: on surface contamination induced by surface mechanical attrition treatment. IOP Conf Ser Mater Sci Eng. 2014;63:012020.
  • Chemkhi M, Retraint D, Roos A, et al. Role and effect of mechanical polishing on the enhancement of the duplex mechanical attrition/plasma nitriding treatment of AISI 316L steel. Surf Coat Technol. 2017;325:454–461.
  • Tian JW, Villegas JC, Yuan W, et al. A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater Sci Eng A. 2007;468-470:164–170.
  • Kumar SA, Raman SGS, Narayanan TSNS. Influence of surface mechanical attrition treatment duration on fatigue lives of Ti-6Al-4V. Trans Indian Inst Met. 2014;67:137–141.
  • Maurel P, Weiss L, Bochet P, et al. Effects of SMAT at cryogenic and room temperatures on the kink band and martensite formations with associated fatigue resistance in a beta-metastable titanium alloy. Mater Sci Eng A. 2021;803:140618.
  • Pandey V, Chattopadhyay K, Srinivas NCS, et al. Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy. Int J Fatigue. 2017;103:426–435.
  • Maurel P, Weiss L, Bochet P, et al. How does surface integrity of nanostructured surfaces induced by severe plastic deformation influence fatigue behaviors of Al alloys with enhanced precipitation? Int J Fatigue. 2020;140:105792.
  • Bagherifard S, Fernandez-Pariente I, Ghelichi R, et al. Effect of severe shot peening on microstructure and fatigue strenght of cast iron. Int J Fatigue. 2014;65:64–70.
  • Zhou J, Sun Z, Kanouté P, et al. Effect of surface mechanical attrition treatment on low cycle fatigue properties of an austenitic stainless steel. Int J Fatigue. 2017;103:309–317.
  • Gao T, Sun Z, Xue H, et al. Effect of surface mechanical attrition treatment on the very high cycle fatigue behavior of TC11. MATEC Web Conf. 2018;165:09001.
  • Wick A, Schulze V, Vöhringer O. Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel. Mater Sci Eng A. 2000;293:191–197.
  • Harada Y, Mori K. Effect of processing temperature on warm shot peening of spring steel. J Mater Process Technol. 2005;162-163:498–503.
  • Huang Y, Liu WC, Dong J. Surface characteristics and fatigue performance of warm shot peened wrought magnesium alloy Mg-9Gd-2Y. Mater Sci Technol. 2014;30:1481–1487.
  • Lapovok R, Estrin YS, Rundell S, et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 2010;31:3674–3683.
  • Estrin Y, Ivanova EP, Michalska A, et al. Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater. 2011;7:900–906.
  • Lowe TC, Valiev RZ. Advanced biomaterials and biodevices. In: Tiwari A, Nordin AN, editors. Beverly (MA): Wiley-Scrivener Publishing; 2014; p. 3–52.
  • Bagherifard S, Hickey DJ, Fintova S, et al. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Acta Biomater. 2018;66:93–108.
  • Acharya S, Suwas S, Chatterjee K. Review of recent developments in surface nanocrystallization of metallic biomaterials. Nanoscale. 2021;13:2286–2301.
  • Maleki N, Fattahi NA, Unal O, et al. Mechanical characterization and interfacial enzymatic activity of AISI 316L stainless steel after surface nanocrstalliztaion. Surf Coat Technol. 2021;405:126729.
  • Kraemer L, Champion Y, Pippan R. From powders to bulk metallic glass composites. Sci Rep. 2017;7:6651.
  • Edalati K, Uehiro R, Ikeda Y, et al. Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Mater. 2018;149:88–96.
  • Popova EN, Deryagina IL. Optimization of the microstructure of Nb3Sn layers in superconducting composites. Phys Met Metallogr. 2018;119:1229–1236.
  • Popova EN, Popov VV, Rodionova LA, et al. Effect of annealing and doping with Zr on the structure and properties of in situ Cu-Nb composite wire. Scr Mater. 2002;46:193–198.
  • Popova EN, Popov VV. Dislocation and grain structure formation in Nb filaments of different geometry at fabrication of Nb3Sn-based superconducting wires. Mater Charact. 2020;167:110488–110495.
  • Popov VV, Popova EN, Stolbovskiy AV. Nanostructuring Nb by various techniques of severe plastic deformation. Mater Sci Eng A. 2012;539:22–29.
  • Popova EN, Popov VV, Romanov EP, et al. Thermal stability of nanocrystalline Nb produced by severe plastic deformation. Phys Met Metallogr. 2006;101:52–57.
  • Popov VV, Popova EN, Stolbovskiy AV, et al. Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures. Mater Sci Eng A. 2011;528:1491–1496.
  • Popova EN, Popov VV, Romanov EP, et al. Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion. Phys Met Metallogr. 2007;103:407–413.
  • Popov VV, Popova EN, Stolbovskiy AV, et al. Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained. Phys Met Metallogr. 2012;113:295–301.
  • Popova EN, Popov VV, Romanov EP, et al. Effect of deformation and annealing on texture parameters of composite Cu-Nb wire. Scr Mater. 2004;51:727–731.
  • Deryagina IL, Popova EN, Valova-Zaharevskaya EG, et al. Structure and thermal stability of high-strength Cu-18Nb composite depending on the degree of deformation. Phys Met Metallogr. 2018;119:92–102.
  • Popova EN, Deryagina IL. Evolution of structure of Cu-Nb composite under high-pressure torsion and subsequent annealing. Phys Met Metallogr. 2020;121:1182–1187.
  • Popov VV, Popova EN. Behavior of Nb and Cu-Nb composites under severe plastic deformation and annealing. Mater Trans. 2019;60:1209–1220.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.
  • Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213–218.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230.
  • Li W, Xie D, Li D, et al. Mechanical behavior of high-entropy alloys. Prog Mater Sci. 2021;118:100777.
  • Hammond VH, Atwater MA, Darling KA, et al. Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying. JOM. 2014;66:2021–2029.
  • Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015;96:258–268.
  • Shahmir H, He J, Lu Z, et al. Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater Sci Eng A. 2016;676:294–303.
  • Shahmir H, Mousavi T, He J, et al. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater Sci Eng A. 2017;705:411–419.
  • Gubicza J, Hung PT, Kawasaki M, et al. Influence of severe plastic deformation on the microstructure and hardness of a CoCrFeNi high-entropy alloy: A comparison with CoCrFeNiMn. Mater Charact. 2019;154:304–314.
  • Skrotzki W, Pukenas A, Odor E, et al. Microstructure, texture, and strength development during high-pressure torsion of CrMnFeCoNi high-entropy alloy. Crystals. 2020;10:336.
  • Lu Y, Mazilkin A, Boll T, et al. Influence of carbon on the mechanical behavior and microstructure evolution of CoCrFeMnNi processed by high pressure torsion. Materialia. 2021;16:101059.
  • Kwon H, Asghari-Rad P, Park JM, et al. Synergetic strengthening from grain refinement and nano-scale precipitates in non-equiatomic CoCrFeNiMo medium-entropy alloy. Intermetallics. 2021;135:107212.
  • Edalati P, Mohammadi A, Ketabchi M, et al. Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: twins and stacking faults in FCC and dislocations in BCC. J Alloys Compd. 2022;894:162413.
  • Tang QH, Huang Y, Huang YY, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater Lett. 2015;151:126–129.
  • Tang QH, Huang Y, Cheng H, et al. The effect of grain size on the annealing-induced phase transformation in an Al0.3CoCrFeNi high entropy alloy. Mater Des. 2016;105:381–385.
  • Edalati P, Mohammadi A, Ketabchi M, et al. Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion. J Alloys Compd. 2021;884:161101.
  • Reddy TS, Wani IS, Bhattacharjee T, et al. Severe plastic deformation driven nanostructure and phase evolution in a Al0.5CoCrFeMnNi dual phase high entropy alloy. Intermetallics. 2017;91:150–157.
  • Edalati P, Floriano R, Tang Y, et al. Ultrahigh hardness and biocompatibility of high-entropy alloy TiAlFeCoNi processed by high-pressure torsion. Mater Sci Eng C. 2020;112:110908.
  • Edalati P, Mohammadi A, Tang Y, et al. Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion. Mater Lett. 2021;302:130368.
  • Shahmir H, Tabachnikova E, Podolskiy A, et al. Effect of carbon content and annealing on structure and hardness of CrFe2NiMnV0.25 high-entropy alloys processed by high-pressure torsion. J Mater Sci. 2018;53:11813–11822.
  • Asghari-Rad P, Sathiyamoorthi P, Bae JW, et al. Effect of initial grain size on deformation mechanism during high-pressure torsion in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy. Adv Eng Mater. 2020;22:1900587.
  • Asghari-Rad P, Sathiyamoorthi P, Nguyen NTC, et al. Fine-tuning of mechanical properties in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy through high-pressure torsion and annealing. Mater Sci Eng. 2020;771:138604.
  • Edalati P, Floriano R, Mohammadi A, et al. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scr. Mater. 2020;178:387–390.
  • Asghari-Rad P, Sathiyamoorthi P, Nguyen NTC, et al. A powder-metallurgy-based fabrication route towards achieving high tensile strength with ultra-high ductility in high-entropy alloy. Scr Mater. 2021;190:69–74.
  • Asghari-Rad P, Nguyen NTC, Kim Y, et al. TiC-reinforced CoCrFeMnNi composite processed by cold-consolidation and subsequent annealing. Mater Lett. 2021;303:130503.
  • Karthik GM, Asghari-Rad P, Sathiyamoorthi P, et al. Architectured multi-metal CoCrFeMnNi-inconel 718 lamellar composite by high-pressure torsion. Scr Mater. 2021;195:113722.
  • Kilmametov A, Kulagin R, Mazilkin A, et al. High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scr Mater. 2019;158:29–33.
  • González-Masís J, Cubero-Sesin JM, Campos-Quirós A, et al. Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion. Mater Sci Eng A. 2021;825:141869.
  • Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020;5:295–309.
  • Akrami S, Edalati P, Edalati K, et al. High-entropy ceramics: review of principles, production and applications. Mater Sci Eng R. 2021;146:100644.
  • de Marco MO, Li Y, Li HW, et al. Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy. Adv Eng Mater. 2020;22:1901079.
  • Edalati P, Wang Q, Razavi-Khosroshahi H, et al. Photocatalytic hydrogen evolution on a high-entropy oxide. J Mater Chem A. 2020;8:3814–3821.
  • Akrami S, Murakami Y, Watanabe M, et al. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl Catal B. 2022;303:120896.
  • Edalati P, Shen XF, Watanabe M, et al. Hih-entropy oxyitride as low-bandgap and stable photocatalyst for hydrogen production. J Mater Chem A. 2021;9:15076–15086.
  • Bridgman PW, Simon I. Effects of very high pressures on glass. J Appl Phys. 1953;24:405–413.
  • Sikka S, Mackenzie JD. High pressure effects on glass. J Non Cryst Solids. 1969;1:107–142.
  • Sakata M, Aoki S. Torsional strength of glass under hydrostatic pressure. J Eng Mater Technol. 1973;95:83–86.
  • Uhlmann DR. Densification of alkali silicate glasses at high pressure. J Non Cryst Solids. 1973;13:89–99.
  • Edalati K, Fujita I, Sauvage X, et al. Microstructure and phase transformations of silica glass and vanadium oxide by severe plastic deformation via high-pressure torsion straining. J Alloys Compd. 2019;779:394–398.
  • Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306.
  • Miracle DB, Egami T, Flores KM. Structural aspects of metallic glasses. MRS Bull. 2007;32:629–634.
  • Trexler MM, Thadhani NN. Mechanical properties of bulk metallic glasses. Prog Mater Sci. 2010;55:759–839.
  • Greer AL, Ma E. Bulk metallic glasses: at the cutting edge of metals research. MRS Bull. 2007;32:611–619.
  • Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067–4109.
  • Spaepen F. Homogeneous flow of metallic glasses: A free volume perspective. Scr Mater. 2006;54:363–367.
  • Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Mater Sci Eng R. 2013;74:71–132.
  • Chen H, He Y, Shiflet GJ, et al. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature. 1994;367:541–543.
  • Zhang Y, Greer AL. Thickness of shear bands in metallic glasses. Appl Phys Lett. 2006;89:071907.
  • Zhang Y, Wang WH, Greer AL. Making metallic glasses plastic by control of residual stress. Nat Mater. 2006;5:857–860.
  • Liu YH, Wang G, Wang RJ, et al. Super plastic bulk metallic glasses at room temperature. Science. 2007;315:1385–1388.
  • Xi XK, Zhao DQ, Pan MX, et al. Fracture of brittle metallic glasses: brittleness or plasticity. Phys Rev Lett. 2005;94:125510.
  • Herbert RJ, Boucharat N, Perepezko JH, et al. Synthesis routes for controlling the microstructure in nanostructured Al88Y7Fe5 alloys. J Alloys Compd. 2007;434-435:252–254.
  • Suzuki Y, Haimovich J, Egami T. Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. Phys Rev B. 1987;35:2162–2168.
  • Poulsen HF, Wert JA, Neuefeind J, et al. Measuring strain distributions in amorphous materials. Nat Mater. 2005;4:33–36.
  • Révész Á, Schafler E, Kovács Z. Structural anisotropy in a Zr57Ti5Cu20Al10Ni8 bulk metallic glass deformed by high pressure torsion at room temperature. Appl Phys Lett. 2008;92:11910.
  • Dmowski W, Yokoyama Y, Chuang A, et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation. Acta Mater. 2010;58:429–438.
  • Blank VD, Kulnitskiy BA. Crystallogeometry of polymorphic transitions in silicon under pressure. High Press Res. 1996;37:31–42.
  • Islamgaliev RK, Chmelik F, Gibadullin IF, et al. The nanocrystalline structure formation in germanium subjected to severe plastic deformation. Nanostruct Mater. 1994;4:387–395.
  • Islamgaliev RK, Kuzel R, Obraztsova ED, et al. XRD and Raman scattering of germanium processed by severe deformation. Mater Sci Eng A. 1998;249:152–157.
  • Islamgaliev RK, Kuzel R, Mikov SN, et al. Structure of silicon processed by severe plastic deformation. Mater Sci Eng A. 1999;266:205–210.
  • Ikoma Y, Hayano K, Edalati K, et al. Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion. Appl Phys Lett. 2012;101:121908.
  • Ikoma Y, Hayano K, Edalati K, et al. Fabrication of nanograined silicon by high pressure torsion. J Mater Sci. 2014;49:6565–6569.
  • Fukushima Y, Ikoma Y, Edalati K, et al. High-resolution transmission electron microscopy analysis of bulk nanograined silicon processed by high-pressure torsion. Mater Charact. 2017;129:163–168.
  • Ikoma Y, Yamasaki T, Masuda T, et al. Synchrotron X-ray diffraction observation of phase transformation during annealing of Si processed by high-pressure torsion. Philos Mag Lett. 2021;101:223–231.
  • Chon B, Ikoma Y, Kohno M, et al. Impact of metastable phases on electrical properties of Si with different doping concentrations after processing by high-pressure torsion. Scr Mater. 2018;157:120–123.
  • Ikoma Y, Chon B, Yamasaki T, et al. Crystal and electronic structural changes during annealing in severely deformed Si containing metastable phases formed by high-pressure torsion. Appl Phys Lett. 2018;113:101904.
  • Harish S, Tabara M, Ikoma Y, et al. Thermal conductivity reduction of crystalline silicon by high-pressure torsion. Nanoscale Res Lett. 2014;9:326.
  • Shao C, Matsuda K, Ju S, et al. Phonon transport in multiphase nanostructured silicon fabricated by high-pressure torsion. J Appl Phys. 2021;129:085101.
  • Ikoma Y, Toyota T, Ejiri Y, et al. Allotropic phase transformation and photoluminescence of germanium nanograins processed by high-pressure torsion. J Mater Sci. 2016;51:138–143.
  • Ikoma Y, Kumano K, Edalati K, et al. High-resolution transmission electron microscopy analysis of nanograined germanium produced by high-pressure torsion. Mater Charact. 2017;132:132–138.
  • Ikoma Y, Kumano K, Edalati K, et al. Phase transformation of germanium by processing through high-pressure torsion: strain and temperature effects. Philos Mag Lett. 2017;97:27–34.
  • Ikoma Y, Yamasaki T, Shimizu T, et al. Formation of metastable bc8 phase from crystalline Si0.5Ge0.5 by highpressure torsion. Mater Charact. 2020;169:110590.
  • Ikoma Y, Ejiri Y, Hayano K, et al. Nanograin formation of GaAs by high-pressure torsion. Philos Mag Lett. 2014;94:1–8.
  • Edalati K, Daio T, Ikoma Y, et al. Graphite to diamond-like carbon phase transformation by high-pressure torsion. Appl Phys Lett. 2013;103:034108.
  • Ikoma Y. Production of nanograins and metastable phases in bulk Si and Ge semiconductors using severe plastic deformation under high pressure. Materia Japan. 2021;60:706–711.
  • Boker R. The mechanics of plastic deformation in crystalline solids. Ver dtsch Ing Mitt Forsch. 1915;175:1–51.
  • Griggs DT. Deformation of rocks under high confining pressure. J Geol. 1937;44:541–577.
  • Bates CH, White WB, Roy R. New high-pressure polymorph of zinc oxide. Science. 1963;137:993.
  • Bell PM. Aluminum silicate system: experimental determination of the triple point. Science. 1963;139:1055–1056.
  • Dachille F, Roy R. Effectiveness of shearing stresses in accelerating solid-phase reactions at low temperatures and high pressures. J Geol. 1964;72:243–247.
  • Miller RO, Dachille FF, Roy R. High-pressure phase-equilibrium studies of CdS and MnS by static and dynamic methods. J Appl Phys. 1966;37:4913–4918.
  • Vereshchagin LF, Zubova EV, Burdina KP, et al. Behaviour of oxides under the action of high pressure with simultaneous application of shear stresses. Dokl Akad Nauk SSSR. 1971;196:817–818.
  • Morozova OS, Maksimov YV, Shashkin DP, et al. Carbon monoxide hydrogenation over iron oxide, subjected to shear deformation under high pressure: role of vacancies. Appl Catal. 1991;78:227–239.
  • Morozova S, Ziborov AV, Kryukova GN, et al. Effect of shear deformation under high pressure on NiO structure transformation in reducing atmosphere. J Sol State Chem. 1992;101:353–355.
  • Fujita I, Edalati K, Sauvage X, et al. Grain growth in nanograined aluminum oxide by high-pressure torsion: phase transformation and plastic strain effects. Scr Mater. 2018;152:11–14.
  • Edalati K, Fujita I, Takechi S, et al. Photocatalytic activity of aluminum oxide by oxygen vacancy generation using high-pressure torsion straining. Scr Mater. 2019;173:120–124.
  • Fujita I, Edalati K, Wang Q, et al. High-pressure torsion to induce oxygen vacancies in nanocrystals of magnesium oxide: enhanced light absorbance, photocatalysis and significance in geology. Materialia. 2020;11:100670.
  • Edalati K, Toh S, Ikoma Y, et al. Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion. Scr Mater. 2011;65:974–977.
  • Wang Q, Edalati K, Koganemaru Y, et al. Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion. J Mater Chem A. 2020;8:3643–3650.
  • Razavi-Khosroshahi H, Edalati K, Arita M, et al. Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics. Scr Mater. 2016;124:59–62.
  • Razavi-Khosroshahi H, Edalati K, Hirayama M, et al. Visible-light-driven photocatalytic hydrogen generation on nanosized TiO2-II stabilized by high-pressure torsion. ACS Catal. 2016;6:5103–5107.
  • Wang Q, Watanabe M, Edalati K. Visible-light photocurrent in nanostructured high-pressure TiO2-II (columbite) phase. J Phys Chem C. 2020;124:13930–13935.
  • Akrami S, Watanabe M, Ling TH, et al. High-pressure TiO2-II polymorph as an active photocatalyst for CO2 to CO conversion. Appl Catal B. 2021;298:120566.
  • Edalati K, Wang Q, Razavi-Khosroshahi H, et al. Low-temperature anatase-to-rutile phase transformation and unusual grain coarsening in titanium oxide nanopowders by high-pressure torsion straining. Scr Mater. 2019;162:341–344.
  • Edalati K, Wang Q, Eguchi H, et al. Impact of TiO2-II phase stabilized in anatase matrix by high-pressure torsion on electrocatalytic hydrogen production. Mater Res Lett. 2019;7:334–339.
  • Razavi-Khosroshahi H, Edalati K, Wu J, et al. High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. J Mater Chem A. 2017;5:20298–20303.
  • Wang Q, Edalati K, Fujita I, et al. High-pressure torsion of SiO2 quartz sand: phase transformation, optical properties and significance in geology. J Am Ceram Soc. 2020;103:6594–6602.
  • Razavi-Khosroshahi H, Edalati K, Emami H, et al. Optical properties of nanocrystalline monoclinic Y2O3 stabilized by grain size and plastic strain effects via high-pressure torsion. Inorg Chem. 2017;56:2576–2580.
  • Fujita I, Edalati P, Wang Q, et al. Novel black bismuth oxide (Bi2O3) with enhanced photocurrent generation, produced by high-pressure torsion straining. Scr Mater. 2020;187:366–370.
  • Edalati K, Arimura M, Ikoma Y, et al. Plastic deformation of BaTiO3 ceramics by high-pressure torsion and changes in phase transformations, optical and dielectric properties. Mater Res Lett. 2015;3:216–221.
  • Edalati K, Fujiwara K, Takechi S, et al. Improved photocatalytic hydrogen evolution on tantalate perovskites CsTaO3 and LiTaO3 by strain-induced vacancies. ACS Appl Energy Mater. 2020;3:1710–1718.
  • Hidalgo-Jimenez J, Wang Q, Edalati K, et al. High-pressure torsion of TiO2-ZnO composites: phase transformations, vacancy formation and changes in optical and photocatalytic properties. Int J Plasticity. 2020;124:170–185.
  • Edalati K, Uehiro R, Takechi S, et al. Enhanced photocatalytic hydrogen production on GaN-ZnO oxynitride by introduction of strain-induced nitrogen vacancy complexes. Acta Mater. 2020;185:149–156.
  • Sena H. Stabilization of high-pressure phase semiconductors by plastic strain. J Soc Powder Technol Japan. 2021;58:66–72.
  • Levitas VI, Shvedov LK. Low-pressure phase transformation from rhombohedral to cubic BN: experiment and theory. Phys Rev B. 2002;65:104109.
  • Levitas VI, Javanbakht M. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale. 2014;6:162–166.
  • Javanbakht M, Levitas VI. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys Rev B. 2016;94:214104.
  • Ji C, Levitas VI, Zhu H, et al. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure. Proc Natl Acad Sci USA. 2012;109:19108–19112.
  • Levitas VI, Ma Y, Hashemi J, et al. Strain-induced disorder, phase transformations and transformation induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: in-situ X-ray diffraction study and modeling. J Chem Phys. 2006;125:044507.
  • Mohamed FA, Dheda SS. On the minimum grain size obtainable by high-pressure torsion. Mater Sci Eng A. 2012;558:59–63.
  • Starink MJ, Cheng XC, Yang S. Hardening of pure metals by high-pressure torsion: a physically based model employing volume-averaged defect evolutions. Acta Mater. 2013;61:183–192.
  • Setman D, Schafler E, Korznikova E, et al. The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation. Mater Sci Eng A. 2008;493:116–122.
  • Oberdorfer B, Lorenzoni B, Unger K, et al. Absolute concentration of free volume-type defects in ultrafine-grained Fe prepared by high-pressure torsion. Scr Mater. 2010;63:452–455.
  • Čížek J, Janeček M, Vlasák T, et al. The development of vacancies during severe plastic deformation. Mater Trans. 2019;60:1533–1542.
  • Bridgman PW. Polymorphic transitions up to 50,000 Kg/cm2 of several organic substances. Am Acad Arts Sci. 1938;72:227–268.
  • Bridgman PW. The effect of high mechanical stress on certain solid explosives. J Chem Phys. 1947;15:311–313.
  • Larsen HA, Drickamer HG. Chemical effects of plastic deformation at high pressure. J Phys Chem. 1957;61:1249–1252.
  • Zhorin VA, Kissin YV, Luizo YV, et al. Structural changes in polyolefins due to the combination of high pressure and shear deformation. Polym Sci USSR. 1976;18:3057–3061.
  • Zhorin VA, Maksimychev AV, Ponomarenko AT, et al. Electrophysical characteristics of several organic compounds at high pressures and high pressures combined with shearing strains. Bull Acad Sci USSR Div Chem Sci. 1979;28:2078–2082.
  • Goldman AY, Demenchuk NP. Effect of hydrostatic pressure on mechanical properties of crystalline polymers under shear. Strength Mater. 1981;13:110–114.
  • Zhorin VA, Kulakov VV, Nikolskii VG, et al. Homogenization of blends of polypropylene and ethylene-propylene rubber under shear in the presence of inorganic fillers. Polym Sci USSR. 1982;24:1081–1084.
  • Enikolopov ΝS. Solid phase chemical reactions and new technologies. Russ Chem Rev. 1991;60:283–287.
  • Zharov AA. Reaction ability of monomers and other organic compounds in solid state under high pressure and shear deformation. Vysokomoleculyarnya Soedineniya [Macromolecular Compounds]. 2004;46:1613–1637.
  • Beloshenko V, Beygelzimer Y, Voznyak Y. Solid-state extrusion. In: Mark HF, editor.  Encyclopedia of polymer science and technology. New York (NY): John Wiley & Sons; 2015. p. 1–16.
  • Sue HJ, Li CKJ. Control of orientation of lamellar structure in linear low density polyethylene via equal channel angular extrusion process. J Mater Sci Lett. 1998;17:853–856.
  • Sue HJ, Dilan H, Li CKY. Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process. I: finite element methods modeling. Polym Eng Sci. 1999;39:2505–2515.
  • Beloshenko VA, Voznyak AV, Voznyak YV. Control of the mechanical and thermal properties of semicrystalline polymers via a new processing route of the equal channel multiple angular extrusion. Polym Eng Sci. 2014;54:531–539.
  • Beloshenko VA, Voznyak AV, Voznyak YV. Effects of equal-channel, multiple-angular extrusion on the physical and mechanical properties of glassy polymers. J Appl Polym Sci. 2015;132:42180–42187.
  • Beloshenko V, Voznyak Y, Voznyak A, et al. New approach to production of fiber reinforced polymer hybrid composites. Compos B. 2017;112:22–30.
  • Beloshenko VA, Varyukhin VN, Voznyak AV, et al. New methods of solid-phase modification of polymers by simple-shear deformation. Dokl Phys Chem. 2009;426:81–83.
  • Vozniak I, Beloshenko V, Savchenko B, et al. Improvement of mechanical properties of polylactide by equal channel multiple angular extrusion. J Appl Polym Sci. 2021;138:49720.
  • Renk O, Pippan R. Saturation of grain refinement during severe plastic deformation of single phase materials: reconsiderations, current status and open questions. Mater Trans. 2019;60:1270–1282.
  • Gubicza J. Lattice defects and their influence on the mechanical properties of bulk materials processed by severe plastic deformation. Mater Trans. 2019;60:1230–1242.
  • Sauvage X, Enikeev N, Valiev R, et al. Atomic scale analysis of the segregation and precipitation mechanisms in a severely deformed Al-Mg alloy. Acta Mater. 2014;72:125–136.
  • Tóth LS, Massion RA, Germain L, et al. Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field. Acta Mater. 2004;52:1885–1898.
  • Azzeddine H, Bradai D, Baudin T, et al. Texture evolution in high-pressure torsion processing. Prog Mater Sci. 2022;125:100886.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Oxford: Pergamon; 1995.
  • Tsuji N, Kamikawa N, Li B. Grain size saturation during severe plastic deformation. Mater Sci Forum. 2007;539-543:2837–2842.
  • Hansen N, Hensen DJ. Development of microstructure in FCC metals during cold work. Phil Trans R Soc Lond A. 1999;357:1447–1469.
  • Hansen N. New discoveries in deformed metals. Metall Mater Trans A. 2001;32:2917–2935.
  • Huang X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals. Science. 2006;312:249–251.
  • Tian YZ, Gao S, Zhao LJ, et al. Remarkable transitions of yield behavior and Lüders deformation in pure Cu by changing grain sizes. Scr Mater. 2018;142:88–91.
  • Tian YZ, Gao S, Zheng RX, et al. Two-stage Hall-Petch relationship in Cu with recrystallized structure. J Mater Sci Techol. 2020;48:31–35.
  • Zheng R, Du JP, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer. Acta Mater. 2020;198:35–46.
  • Terada D, Inoue M, Kitahara H, et al. Change in mechanical properties and microstructures of ARB processed Ti during annealing. Mater Trans. 2008;49:41–46.
  • Saha R, Ueji R, Tsuji N. Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel. Scr Mater. 2013;68:813–816.
  • Bai Y, Tian Y, Gao S, et al. Hydrogen embrittlement behaviors of ultrafine-grained 22Mn-0.6C austenitic twinning induced plasticity steel. J Mater Res. 2017;32:4592–4604.
  • Bai Y, Kitamura H, Gao S, et al. Unique transition of yielding mechanism and unexpected activation of deformation twinning in ultrafine grained Fe-31Mn-3Al-3Si alloy. Sci Rep. 2021;11:15870.
  • Tian YZ, Zhao LJ, Chen S, et al. Significant contribution of stacking faults to the strain hardening behavior of Cu-15% Al alloy with different grain sizes. Sci Rep. 2015;5:16707.
  • Zheng R, Bhattacharjee T, Shibata A, et al. Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures. Scr Mater. 2017;131:1–5.
  • Zheng RX, Bhattacharjee T, Gao S, et al. Change of deformation mechanisms leading to high strength and large ductility in Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained microstructures. Sci Rep. 2019;9:11702.
  • Zhang B, Chong Y, Zheng R, et al. Enhanced mechanical properties in beta-Ti alloy aged from recrystallized ultrafine beta grains. Mater Des. 2020;195:109017.
  • Yoshida Y, Ikeuchi T, Bhattacharjee T, et al. Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys. Acta Mater. 2019;171:201–215.
  • Yoshida S, Bhattacharjee T, Bai Y, et al. Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scr Mater. 2017;134:33–36.
  • Tsuji N, Ogata S, Inui H, et al. Strategy for managing both high strength and large ductility in structural materials - sequential nucleation of different deformation modes based in a concept of plaston. Scr Mater. 2020;181:35–42.
  • Tsuji N, Ogata S, Inui H, et al. Corrigendum to ‘strategy for managing both high strength and large ductility in structural materials - sequential nucleation of different deformation modes based on a concept of plaston’. Scr Mater. 2021;196:113755.
  • Renk O, Hohenwarter A, Wurster S, et al. Direct evidence for grain boundary motion as the dominant restoration mechanism in the steady-state regime of extremely cold-rolled copper. Acta Mater. 2014;77:401–410.
  • Yu T, Hansen N, Huang X, et al. Observation of a new mechanism balancing hardening and softening in metals. Mater Res Lett. 2014;2:160–165.
  • Renk O, Pippan R. Transition from thermally assisted to mechanically driven boundary migration and related apparent activation energies. Scr Mater. 2018;154:212–215.
  • Han J, Thomas SL, Srolovitz DJ. Grain-boundary kinetics: a unified approach. Prog Mater Sci. 2018;98:386–476.
  • Rajabzadeh A, Legros M, Combe N, et al. Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration. Philos Mag. 2013;93:1299–1316.
  • Rajabzadeh A, Mompiou F, Legros M, et al. Elementary mechanisms of shear-coupled grain boundary migration. Phys Rev Lett. 2013;110:265507.
  • Kvashin N, Garcia-Müller PL, Anento N, et al. Atomic processes of shear-coupled migration in {112} twins and vicinal grain boundaries in bcc-Fe. Phys Rev Mater. 2020;4:073604.
  • Kapp MW, Renk O, Leitner T, et al. Cyclically induced grain growth within shear bands investigated in UFG Ni by cyclic high pressure torsion. J Mater Res. 2017;32:4317–4326.
  • Kapp MW, Renk O, Ghosh P, et al. Plastic strain triggers structural instabilities upon cyclic loading in ultrafine-grained nickel. Acta Mater. 2020;200:136–147.
  • Renk O, Ghosh P, Pippan R. Generation of extreme grain aspect ratios in severely deformed tantalum at elevated temperatures. Scr Mater. 2017;137:60–63.
  • Renk O, Ghosh P, Pippan R. From an understanding of structural restoration mechanisms towards a selective processing of extreme nanolamellar structures. IOP Conf Ser Mater Sci Eng. 2017;219:12037.
  • Rathmayr GB, Pippan R. Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel. Acta Mater. 2011;59:7228–7240.
  • Zhang K, Alexandrov IV, Lu K. The X-ray diffraction study on a nanocrystalline Cu processed by equal-channel angular pressing. Nanostructured Mater. 1997;9:347–350.
  • Chang JY, Kim GH, Moon IG. X-ray diffraction analysis of pure aluminum in the cyclic equal channel angular pressing. Scr Mater. 2001;44:331–336.
  • Ungár T, Gubicza J, Hanák P, et al. Densities and character of dislocations and size-distribution of subgrains in deformed metals by X-ray diffraction profile analysis. Mater Sci Eng A. 2001;319-321:274–278.
  • Gubicza J. X-ray line profile analysis in materials science. Hershey (PA): IGI-Global; 2014.
  • Cízek J. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: a review. J Mater Sci Technol. 2018;34:577–598.
  • Dalla Torre F, Lapovok R, Sandlin J, et al. Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes. Acta Mater. 2004;52:4819–4832.
  • Steiner EG, Korznikova E, Kerber M, et al. Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis, calorimetry and electrical resistometry. Mater Sci Eng A. 2005;410-411:169–173.
  • Cizek J, Janecek M, Srba O, et al. Evolution of defects in copper deformed by high-pressure torsion. Acta Mater. 2011;59:2322–2329.
  • Hegedűs Z, Gubicza J, Kawasaki M, et al. High temperature thermal stability of ultrafine-grained silver processed by equal-channel angular pressing. J Mater Sci. 2013;48:1675–1684.
  • Gubicza J. Defect structure and properties of nanomaterials. Duxford: Woodhead Publishing; 2017.
  • Heczel A, Kawasaki M, Lábár JL, et al. Defect structure and hardness in nanocrystalline CoCrFeMnNi high-entropy alloy processed by high-pressure torsion. J Alloys Compd. 2017;711:143–154.
  • Kawasaki M, Horita Z, Langdon TG. Microstructural evolution in high purity aluminum processed by ECAP. Mater Sci Eng A. 2009;524:143–150.
  • Xu C, Horita Z, Langdon TG. Microstructural evolution in an aluminum solid solution alloy processed by ECAP. Mater Sci Eng A. 2011;528:6059–6065.
  • Tao J, Chen G, Jian W, et al. Anneal hardening of a nanostructured Cu-Al alloy processed by high-pressure torsion and rolling. Mater Sci Eng A. 2015;628:207–215.
  • Gubicza J, Pereira PHR, Kapoor G, et al. Annealing-induced hardening in ultrafine-grained Ni-Mo alloys. Adv Eng Mater. 2018;20:1800184.
  • Cao Y, Ni S, Liao X, et al. Structural evolutions of metallic materials processed by severe plastic deformation. Mater Sci Eng R. 2018;133:1–59.
  • Hoffman A, Wen H, Islamgaliev R, et al. High-pressure torsion assisted segregation and precipitation in a Fe-18Cr-8Ni austenitic stainless steel. Mater Lett. 2019;243:116–119.
  • Oh-ishi K, Edalati K, Kim HS, et al. High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum-copper system. Acta Mater. 2013;61:3482–3489.
  • Čížek J, Melikhova O, Janeček M, et al. Homogeneity of ultrafine-grained copper deformed by high-pressure torsion characterized by positron annihilation and microhardness. Scr Mater. 2011;65:171–174.
  • Čížek J, Melikhova O, Barnovská Z, et al. Vacancy clusters in ultra fine grained metals prepared by severe plastic deformation. J Phys Conf Series. 2013;443:012008.
  • Sauvage X, Duchaussoy A, Zaher G. Strain induced segregations in severely deformed materials. Mater Trans. 2019;60:1151–1158.
  • Sauvage X, Ganeev A, Ivanisenko Y, et al. Grain boundary segregation in UFG alloys processed by severe plastic deformation. Adv Eng Mater. 2012;14:968–974.
  • Sauvage X, Wilde G, Divinsky S, et al. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng A. 2012;540:1–12.
  • Zhang Y, Jin S, Trimby PW, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater. 2019;162:19–32.
  • Sauvage X, Bobruk EV, Murashkin MY, et al. Optimization of electrical conductivity and strength combination by nanoscale structure design in an Al-Mg-Si alloy. Acta Mater. 2015;98:355–366.
  • Masuda T, Sauvage X, Hirosawa S, et al. Achieving highly strengthened Al-Cu-Mg alloy by grain refinement and grain boundary segregation. Mater Sci Eng A. 2020;793:139668.
  • Sauvage X, Cuvilly F, Russel A, et al. Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum. Mater Sci Eng A. 2020;798:140108.
  • Duchaussoy A, Sauvage X, Deschamps A, et al. Complex interactions between precipitation, grain growth and recrystallization in a severely deformed Al-Zn-Mg-Cu alloy and consequences on the mechanical behavior. Materialia. 2021;15:101028.
  • Chinh NQ, Valiev RZ, Sauvage X, et al. Grain boundary segregation and unique plastic behaviour in an ultrafine-grained Al-Zn alloy processed by HPT. Adv Eng Mater. 2014;16:1000–1009.
  • Nasedkina Y, Sauvage X, Bobruk EV, et al. Mechanisms of precipitation induced by large strains in the Al-Cu system. J Alloys Compd. 2017;710:736–747.
  • Abramova MM, Enikeev NA, Valiev RZ, et al. Grain boundary segregation induced strengthening of an ultrafine-grained 316 stainless steel. Mater Lett. 2014;136:349–352.
  • Semenova I, Salimgareeva G, Da Costa G, et al. Enhanced strength and ductility of ultrafine-grained Ti processed by severe plastic deformation. Adv Eng Mater. 2010;12:803–807.
  • Sauvage X, Ivanisenko Y. The role of carbon segregation on nanocrystallisation of pearlitic steels processed by severe plastic deformation. J Mater Sci. 2007;42:1615–1621.
  • Lefebvre-Ulrikson W, Vurpillot F, X. Sauvage, editors. Atom probe tomography: put theory into practice. 1st ed. Amsterdam: Elsevier; 2016.
  • Sauvage X, Nasedkina Y. The role of grain boundaries and other defects on phase transformations induced by severe plastic deformation. In: Popov VV, Popova EN, editors. Diffusion Foundations, Vol. 5. Zurich: Trans Tech Publications; 2015; p. 77–92.
  • Sauvage X, Murashkin MY, Straumal BB, et al. Ultrafine grained structures resulting from deformation induced phase transformation in Al-Zn alloys. Adv Eng Mater. 2015;17:1821–1827.
  • Valiev RZ, Enikeev NA, Murashkin MY, et al. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr Mater. 2010;63:949–952.
  • Enikeev NA, Abramova MM, Lomakin IV, et al. Plasticity of an extra-strong nanocrystalline stainless steel controlled by the “dislocation-segregation interaction. Mater Lett. 2021;301:130235.
  • Edalati K, Masuda T, Arita M, et al. Room-temperature superplasticity in an ultrafine-grained magnesium alloy. Sci Rep. 2017;7:2662.
  • Bhowmik A, Biswas S, Suwas S, et al. Evolution of grain-boundary microstructure and texture in interstitial-free steel processed by equal-channel angular extrusion. Metall Mater Trans A. 2009;40:2729.
  • Skrotzki W, Pukenas A, Joni B, et al. Microstructure and texture evolution during severe plastic deformation of CrMnFeCoNi high-entropy alloy. IOP Conf Ser Mater Sci Eng. 2017;194:012028.
  • Nadammal N, Kailas SV, Szpunar J, et al. Microstructure and crystallographic texture evolution during the friction-stir processing of a precipitation-hardenable aluminum alloy. JOM. 2015;67:1014–1021.
  • Edalati K, Hashiguchi Y, Pereira PHR, et al. Effect of temperature rise on microstructural evolution during high-pressure torsion. Mater Sci Eng A. 2018;714:167–171.
  • Roy S, Singh S, Suwas S, et al. Microstructure and texture evolution during accumulative roll bonding of aluminium alloy AA5086. Mater Sci Eng A. 2011;528:8469–8478.
  • Lim SCV, Rollett AD. Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu–Nb composite. Mater Sci Eng A. 2009;520:189–196.
  • Suwas S, Mondal S. Texture evolution in severe plastic deformation processes. Mater Trans. 2019;60:1457–1461.
  • Ivanisenko Y, Kilmametov A, Rösner H, et al. Evidence of α → ω phase transition in titanium after high pressure torsion. Int J Mater Res. 2008;99:36–41.
  • Edalati K, Daio T, Arita M, et al. High-pressure torsion of titanium at cryogenic and room temperatures: grain size effect on allotropic phase transformations. Acta Mater. 2014;68:207–213.
  • Edalati K, Horita Z, Yagi S, et al. Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater Sci Eng A. 2009;523:277–281.
  • Zhilyaev AP, Sabirov I, Gonzales-Doncel G, et al. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions. Mater Sci Eng A. 2011;528:3496–3505.
  • Edalati K, Horita Z, Mine Y. High-pressure torsion of hafnium. Mater Sci Eng A. 2010;527:2136–2141.
  • Cepeda-Jiménez CM, Beltrán JI, Hernando A, et al. Tuning the magnetic properties of pure hafnium by high pressure torsion. Acta Mater. 2017;123:206–2013.
  • Sort J, Zhilyaev A, Zielinska M, et al. Microstructural effects and large microhardness in cobalt processed by high pressure torsion consolidation of ball milled powder. Acta Mater. 2003;51:6385–6393.
  • Edalati K, Toh S, Arita M, et al. High-pressure torsion of pure cobalt: hcp-fcc phase transformations and twinning during severe plastic deformation. Appl Phys Lett. 2013;102:181902.
  • Mazilkin A, Straumal B, Kilmametov A, et al. Phase transformations induced by severe plastic deformation, phase transformations induced by severe plastic deformation. Mater Trans. 2019;60:1489–1499.
  • Edalati K, Kitabayashi K, Ikeda Y, et al. Bulk nanocrystalline gamma magnesium hydride with low dehydrogenation temperature stabilized by plastic straining via high-pressure torsion. Scr Mater. 2018;157:54–57.
  • Kitabayashi K, Edalati K, Li HW, et al. Phase transformations in MgH2-TiH2 hydrogen storage system by high-pressure torsion process. Adv Eng Mater. 2020;22:1900027.
  • Levitas VI. High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils. Mater Trans. 2019;60:1294–1301.
  • Azabou M, Makhlouf T, Saurin J, et al. A study of densification and phase transformations of nanocomposite Cu-Fe prepared by mechanical alloying and consolidation process. Int J Adv Manuf Technol. 2016;87:981–987.
  • Straumal BB, Mazilkin AA, Baretzky B, et al. Accelerated diffusion and phase transformations in Co-Cu alloys driven by the severe plastic deformation. Mater Trans. 2012;53:63–71.
  • Mazilkin AA, Straumal BB, Rabkin E, et al. Softening of nanostructured Al-Zn and Al-Mg alloys after severe plastic deformation. Acta Mater. 2006;54:3933–3939.
  • Straumal B, Kilmametov AR, Kucheev YO, et al. Phase transitions during high pressure torsion of CuCo alloys. Mater Lett. 2014;118:111–114.
  • Straumal BB, Kilmametov AR, Korneva A, et al. Phase transitions in Cu-based alloys under high pressure torsion. J Alloy Compd. 2017;707:20–26.
  • Lugo N, Llorca N, Cabrera JM, et al. Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Mater Sci Eng A. 2008;477:366–371.
  • Liao XZ, Zhao YH, Zhu YT, et al. Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J Appl Phys. 2004;96:636–640.
  • Shamsborhan M, Ebrahimi M. Production of nanostructure copper by planar twist channel angular extrusion process. J Alloys Compd. 2016;682:552–556.
  • Tang CI, Li H, Li SY. Effect of processing route on grain refinement in pure copper processed by equal channel angular extrusion. Trans Nonferr Met Soc China. 2016;26:1736–1744.
  • Mao ZN, Gu RC, Liu F, et al. Effect of equal channel angular pressing on the thermal-annealing-induced microstructure and texture evolution of cold-rolled copper. Mater Sci Eng A. 2016;674:186–192.
  • Bagherpour E, Qods F, Ebrahimi R, et al. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique. Mater Sci Eng A. 2016;674:221–231.
  • Bagherpour E, Qods F, Ebrahimi R, et al. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal. Mater Sci Eng A. 2016;666:324–338.
  • Yadav PC, Sinhal A, Sahu S, et al. Microstructural inhomogeneity in constrained groove pressed Cu-Zn alloy sheet. J Mater Eng Perform. 2016;25:2604–2614.
  • Blank VD, Estrin EI. Phase transitions in solids under high pressure. New York: CRC Press; 2014.
  • Srinivasarao B, Zhilyaev AP, Perez-Prado MT. Orientation dependency of the alpha to omega plus beta transformation in commercially pure zirconium by high-pressure torsion. Scr Mater. 2011;65:241–244.
  • Zharov A. The polymerization reactions of solid monomers under deformation at high pressure. Usp Khim. 1984;53:236–250.
  • Zharov A. Chapter 7- Reaction of solid monomers and polymers under shear deformation and high pressure. In: Kovarskii AL, Boca Raton: CRC Press; 1994. p. 267–301.
  • Levitas VI, Ma Y, Selvi E, et al. High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure. Phys Rev B. 2012;85:054114.
  • Levitas VI. Continuum mechanical fundamentals of mechanochemistry, In: Gogotsi Y, Domnich V, editors. High pressure surface science and engineering. Bristol: Inst. of Physics; 2004; p. 159–292.
  • Levitas VI. High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Phys Rev B. 2004;70:184118.
  • Levitas VI. Phase transformations, fracture, and other structural changes in inelastic materials. Int J Plasticity. 2021;140:102914.
  • Levitas VI. High pressure phase transformations revisited. J Phys Condens Matter. 2018;30:163001.
  • Levitas VI. Phase transitions in elastoplastic materials: continuum thermomechanical theory and examples of control. part I. J Mech Phys Solids. 1997;45:923–947.
  • Levitas VI. Phase transitions in elastoplastic materials: continuum thermomechanical theory and examples of control. part II. J Mech Phys Solids. 1997;45:1203–1222.
  • Levitas VI, Chen H, Xiong L. Lattice instability during phase transformations under multiaxial stress: modified transformation work criterion. Phys Rev B. 2017;96:054118.
  • Levitas VI, Chen H, Xiong L. Triaxial-stress-induced homogeneous hysteresis-free first-order phase transformations with stable intermediate phases. Phys Rev Lett. 2017;118:025701.
  • Zarkevich NA, Chen H, Levitas VI, et al. Lattice instability during solid-solid structural transformations under general applied stress tensor: example of Si I → Si II with metallization. Phys Rev Lett. 2018;121:165701.
  • Levitas VI, Javanbakht M. Phase field approach to interaction of phase transformation and dislocation evolution. Appl Phys Lett. 2013;102:251904.
  • Javanbakht M, Levitas VI. Nanoscale mechanisms for high-pressure mechanochemistry: a phase field study. J Mater Sci. 2018;53:13343–13363.
  • Chen H, Levitas VI, Xiong L. Amorphization induced by 60° shuffle dislocation pileup against different grain boundaries in silicon bicrystal under shear. Acta Mater. 2019;179:287–295.
  • Babaei H, Levitas VI. Finite-strain scale-free phase-field approach to multivariant martensitic phase transformations with stress-dependent effective thresholds. J Mech Phys Solids. 2020;144:104114.
  • Levitas VI, Esfahani SE, Ghamarian I. Scale-free modeling of coupled evolution of discrete dislocation bands and multivariant martensitic microstructure. Phys Rev Lett. 2018;121:205701.
  • Esfahani SE, Ghamarian I, Levitas VI. Strain-induced multivariant martensitic transformations: A scale-independent simulation of interaction between localized shear bands and microstructure. Acta Mater. 2020;196:430–443.
  • Chen H, Levitas V, Xiong L. Slip of shuffle screw dislocations through tilt grain boundaries in silicon. Comput Mater Sci. 2019;157:132–135.
  • Levitas VI, Zarechnyy OM. Kinetics of strain-induced structural changes under high pressure. J Phys Chem B. 2006;110:16035–16046.
  • Levitas VI, Zarechnyy OM. Modeling and simulation of strain-induced phase transformations under compression in a diamond anvil cell. Phys Rev B. 2010;82:174123.
  • Levitas VI, Zarechnyy OM. Modeling and simulation of strain-induced phase transformations under compression and torsion in a rotational diamond anvil cell. Phys Rev B. 2010;82:174124.
  • Feng B, Levitas VI, Kamrani M. Coupled strain-induced alpha to omega phase transformation and plastic flow in zirconium under high pressure torsion in a rotational diamond anvil cell. Mater Sci Eng A. 2018;731:623–633.
  • Levitas VI. Large deformation of materials with complex rheological properties at normal and high pressure. New York: Nova Science Publishers; 1996.
  • Feng B, Levitas VI, Li W. FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell. Int J Plasticity. 2019;113:236–254.
  • Levitas VI. Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. part 1. general theory. Int J Plasticity. 2018;106:164–185.
  • Novikov NV, Polotnyak SB, Shvedov LK, et al. Regularities of phase transformations and plastic straining of materials in compression and shear in diamond anvils: experiments and theory. J Superhard Mater. 1999;21:36–48.
  • Novikov NV, Shvedov LK, Krivosheya YN, et al. New automated shear cell with diamond anvils for in situ studies of materials using X-ray diffraction. J Superhard Mater. 2015;37:1–7.
  • Ciezak-Jenkins JA, Jenkins TA. Optical cell for in situ vibrational spectroscopic measurements at high pressure and shear. Rev Sci Instrum. 2011;82:073905.
  • Nomura R, Uesugi K, Azuma S, et al. High-pressure rotational deformation apparatus to 135 GPa. Rev Sci Instrum. 2017;88:044501.
  • Zarechnyy OM, Levitas VI, Ma Y. Coupled plastic flow and phase transformation under compression of materials in a diamond anvil cell: effects of transformation kinetics and yield strength. J Appl Phys. 2012;111:023518.
  • Blank VD, Buga SG. Automated optical installation with a shear diamond-anvil cell. Instrum Exp Tech. 1993;36:149–157.
  • Pandey KK, Levitas VI. Displacement field measurements in traditional and rotational diamond anvil cells. J Appl Phys. 2021;129:115901.
  • Levitas VI, Hashemi J, Ma Y. Strain-induced disorder and phase transformation in hexagonal boron nitride under quasi-homogeneous pressure: in-situ X-ray study in a rotational diamond anvil cell. Europhys Lett. 2004;68:550–556.
  • Levitas VI, Ma Y, Hashemi J. Transformation-induced plasticity and cascading structural changes in hexagonal boron nitride under high pressure and shear. Appl Phys Lett. 2005;86:071912.
  • Ma Y, Levitas VI, Hashemi J. X-ray diffraction measurements in a rotational diamond anvil cell. J Phys Chem Solids. 2006;67:2083–2090.
  • Levitas VI. Resolving puzzles of the phase-transformation-based mechanism of the deep-focus earthquake; 2020; arXiv preprint arXiv:2110.10862.
  • Ma Y, Selvi E, Levitas VI, et al. Effect of shear strain on the α–ε phase transition of iron: a new approach in the rotational diamond anvil cell. J Phys Condens Matter. 2006;18:1075–1082.
  • Pandey KK, Levitas VI. In situ quantitative study of plastic strain-induced phase transformations under high pressure: example for ultra-pure Zr. Acta Mater. 2020;196:338–346.
  • Popov M, Mordkovich V, Perfilov S, et al. Synthesis of ultrahard fullerite with a catalytic 3D polymerization reaction of C60. Carbon. 2014;76:250–256.
  • Ciezak-Jenkins JA, Jenkins TA. Mechanochemical induced structural changes in sucrose using the rotational diamond anvil cell. J Appl Phys. 2018;123:085901.
  • Hsieh S, Bhattacharyya P, Zu C, et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science. 2019;366:1349–1354.
  • Levitas VI, Kamrani M, Feng B. Tensorial stress-strain fields and large elastoplasticity as well as friction in diamond anvil cell up to 400 GPa. NPJ Comput. Mater. 2019;5:94.
  • Li B, Ji C, Yang W, et al. Diamond anvil cell behavior up to 4 mbar. Proc Natl Acad Sci USA. 2018;115:1713–1717.
  • Watanabe T. An approach to grain boundary design for strong and ductile polycrystals. Res Mech. 1984;11:47.
  • Nazarov A, Romanov A, Valiev RZ. On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall Mater. 1993;41:1033–1040.
  • Wilde G, Divinski S. Grain boundaries and diffusion phenomena in severely deformed materials. Mater Trans. 2019;60:1302–1315.
  • Divinski SV, Reglitz G, Rösner H, et al. Self-diffusion in Ni prepared by severe plastic deformation: effect of non-equilibrium grain boundary state. Acta Mater. 2011;59:1974–1985.
  • Raju KS, Sarma VS, Kauffmann A, et al. High strength and ductile ultrafine-grained Cu-Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Mater. 2013;61:228–238.
  • Ibrahim N, Peterlechner M, Emeis F, et al. Mechanical alloying via high-pressure torsion of the immiscible Cu50Ta50 system. Mater Sci Eng A. 2017;685:19–30.
  • Emeis F, Peterlechner M, Divinski SV, et al. Grain boundary engineering parameters for ultrafine grained microstructures: proof of principles by a systematic composition variation in the Cu-Ni system. Acta Mater. 2018;150:262–272.
  • Divinski SV, Reglitz G, Golovin IS, et al. Effect of heat treatment on diffusion, internal friction, microstructure and mechanical properties of ultra-fine-grained nickel severely deformed by equal-channel angular pressing. Acta Mater. 2015;82:11–21.
  • Fiebig J, Divinski SV, Rösner H, et al. Diffusion of Ag and Co in ultrafine-grained α-Ti deformed by equal channel angular pressing. J Appl Phys. 2011;110:083514.
  • Taheriniya S, Davani FA, Hilke S, et al. High entropy alloy nanocomposites produced by high pressure torsion. Acta Mater. 2021;208:116714.
  • Sauvage X, Chbihi A, Quelennec X. Severe plastic deformation and phase transformations. J Phys Conf Ser. 2010;240:012003.
  • Straumal B, Korneva A, Zięba P. Phase transitions in metallic alloys driven by the high pressure torsion. Arch Civ Mech Eng. 2014;14:242–249.
  • Prokoshkin SD, Khmelevskaya IY, Dobatkin SV, et al. Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape memory alloys. Acta Mater. 2005;53:2703–2714.
  • Kovács Z, Henits P, Zhilyaev AP, et al. Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scr Mater. 2006;54:1733–1737.
  • Sauvage X, Jessner P, Vurpillot F, et al. Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation. Scr Mater. 2008;58:1125–1128.
  • Bachmaier A, Kerber M, Setman D, et al. The formation of supersaturated solid solutions in Fe-Cu alloys deformed by high-pressure torsion. Acta Mater. 2012;60:860–871.
  • Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite. Acta Mater. 2005;53:2127–2135.
  • Straumal B, Baretzky B, Mazilkin A, et al. Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al-Zn and Al-Mg alloys. Acta Mater. 2004;52:4469–4478.
  • Krämer L, Champion Y, Kormout KS, et al. Bulk metallic dual phase glasses by severe plastic deformation. Intermetallics. 2018;94:172–178.
  • Sun Y F, Nakamura T, Todaka Y, et al. Fabrication of CuZr(Al) bulk metallic glasses by high pressure torsion. Intermetallics. 2009;17:256–261.
  • Jiang QK, Wang XD, Nie XP, et al. Zr-(Cu,Ag)-Al bulk metallic glasses. Acta Mater. 2008;56:1785–1796.
  • Men H, Fu J, Ma C, et al. Bulk glass formation in ternary Cu-Zr-Ti system. J Univ Sci Technol Beijing Miner Metall Mater (Eng Ed). 2007;14:19–22.
  • Wang Q, Wang YM, Qiang JB, et al. Composition optimization of the Cu-based Cu-Zr-Al alloys. Intermetallics. 2004;12:1229–1232.
  • Wang YL, Xu J. Ti (Zr)-Cu-Ni bulk metallic glasses with optimal glass-forming ability and their compressive properties. Metall Mater Trans A. 2008;39:2990–2997.
  • Chen W, Wang Y, Qiang J, et al. Bulk metallic glasses in the Zr-Al-Ni-Cu system. Acta Mater. 2003;51:1899–1907.
  • He Q, Xu J. Locating malleable bulk metallic glasses in Zr-Ti-Cu-Al alloys with calorimetric glass transition temperature as an indicator. J Mater Sci Technol. 2012;28:1109–1122.
  • Wiest A, Duan G, Demetriou MD, et al. Zr-Ti-based Be-bearing glasses optimized for high thermal stability and thermoplastic formability. Acta Mater. 2008;56:2625–2630.
  • Umetsu RY, Tu R, Goto T. Thermal and electrical transport properties of Zr-based bulk metallic glassy alloys with high glass-forming ability. Mater Trans. 2012;53:2–6.
  • Xu Y, Zhang Y, Li J, et al. Enhanced thermal stability and hardness of Zr46Cu39.2Ag7.8Al7 bulk metallic glass with Fe addition. Mater Sci Eng A. 2010;527:1444–1447.
  • Caron A, Wunderlich R, Gu L, et al. Structurally enhanced anelasticity in Zr-based bulk metallic glasses. Scr Mater. 2012;64:946–949.
  • Kim CP, Suh J, Wiest A, et al. Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scr Mater. 2009;60:80–83.
  • Liu JW, Cao QP, Chen LY, et al. Shear band evolution and hardness change in cold-rolled bulk metallic glasses. Acta Mater. 2010;58:4827–4840.
  • Liu XJ, Li X, Xu Y, et al. Atomic packing symmetry in the metallic liquid and glass states. Acta Mater. 2011;59:6480–6488.
  • Ma D, Stoica AD, Yang L, et al. Nearest-neighbor coordination and chemical ordering in multicomponent bulk metallic glasses. Appl Phys Lett. 2007;90:6–9.
  • Vo NQ, Zhou J, Ashkenazy Y, et al. Atomic mixing in metals under shear deformation. JOM. 2013;65:382–389.
  • Raabe D, Ohsaki S, Hono K. Mechanical alloying and amorphization in Cu-Nb-Ag in situ composite wires studied by transmission electron microscopy and atom probe tomograph. Acta Mater. 2009;57:5254–5263.
  • Kormout KS, Pippan R, Bachmaier A. Deformation-induced supersaturation in immiscible material systems during high-pressure torsion. Adv Eng Mater. 2017;19:1600675.
  • Wilde G, Rösner H. Stability aspects of bulk nanostructured metals and composites. J Mater Sci. 2007;42:1772–1781.
  • Bachmaier A, Pippan R. High-pressure torsion deformation induced phase transformations and formations: new material combinations and advanced properties. Mater Trans. 2019;60:1256–1269.
  • Peng XK, Wuhrer R, Heness G, et al. On the interface development and fracture behaviour of roll bonded copper/aluminium metal laminates. J Mater Sci. 1999;34:2029–2038.
  • Zhang XP, Yang TH, Castagne S, et al. Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling. Mater Sci Eng A. 2011;528:1954–1960.
  • Macwan A, Jiang XQ, Li C, et al. Effect of annealing on interface microstructure and tensile properties of rolled Al/Mg/Al tri-layer clad sheets. Mater Sci Eng A. 2013;587:344–351.
  • Lee KS, Lee YS, Kwon YN. Influence of secondary warm rolling on the interface microstructure and mechanical properties of a roll-bonded three-ply Al/Mg/Al sheet. Mater Sci Eng A. 2014;606:205–213.
  • Eizadjou M, Talachi AK, Manesh HD, et al. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Comp Sci Technol. 2008;68:2003–2009.
  • Chen MC, Kuo CW, Chang CM, et al. Diffusion and formation of intermetallic compounds during accumulative roll-bonding of Al/Mg alloys. Mater Trans. 2007;48:2595–2598.
  • Chang H, Zheng MY, Xu C, et al. Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature. Mater Sci Eng A. 2012;543:249–256.
  • Dehsorkhi RN, Qods F, Tajally M. Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process. Mater Sci Eng A. 2011;530:63–72.
  • Ghalandari L, Moshksar MM. High-strength and high-conductive Cu/Ag multilayer produced by ARB. J Alloys Compd. 2010;506:172–178.
  • Tayyebi M, Eghbali B. Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding. Mater Sci Eng A. 2013;559:759–764.
  • Ghalandari L, Mahdavian MM, Reihanian M. Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB). Mater Sci Eng A. 2014;593:145–152.
  • Beausir B, Scharnweber J, Jaschinski J, et al. Plastic anisotropy of ultrafine grained aluminium alloys produced by accumulative roll bonding. Mater Sci Eng A. 2010;527:3271–3278.
  • Sato YS, Park SC, Michiuchi M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater. 2004;50:1233–1236.
  • Bouaziz O, Kim HS, Estrin Y. Architecturing of metal-based composites with concurrent nanostructuring, a new paradigm of materials design. Adv Eng Mater. 2013;15:336–340.
  • Ahn B, Zhilyaev AP, Lee HJ, et al. Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater Sci Eng A. 2015;635:109–117.
  • Han JK, Herndon T, Jang JI, et al. Synthesis of hybrid nanocrystalline alloys by mechanical bonding through high-pressure torsion. Adv Eng Mater. 2020;22:1901289.
  • Han JK, Liss KD, Langdon TG, et al. Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg. Sci Rep. 2019;9:17186.
  • Han JK, Liss KD, Langdon TG, et al. Mechanical properties and structural stability of a bulk nanostructured metastable aluminum-magnesium system. Mater Sci Eng A. 2020;796:140050.
  • Han JK, Jang JI, Langdon TG, et al. Bulk-state reactions and improving the mechanical properties of metals through high-pressure torsion. Mater Trans. 2019;60:1131–1138.
  • Edalati K, Horita Z. High-pressure torsion of pure metals: influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater. 2011;59:6831–6836.
  • Sevillano J G. Dynamic steady state by unlimited unidirectional plastic deformation of crystalline materials deforming by dislocation glide at low to moderate temperatures. Metals. 2020;10:66.
  • Edalati K, Daio T, Lee S, et al. High strength and superconductivity in nanostructured niobium-titanium alloy by high-pressure torsion and annealing: significance of elemental decomposition and supersaturation. Acta Mater. 2014;80:149–158.
  • Edalati K, Shao H, Emami H, et al. Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion. Int J Hydrogen Energy. 2016;41:8917–8924.
  • Campos-Quirós A, Cubero-Sesín JM, Edalati K. Synthesis of nanostructured biomaterials by high-pressure torsion: effect of niobium content on microstructure and mechanical properties of Ti-Nb alloys. Mater Sci Eng A. 2020;795:139972.
  • Edalati K, Toh S, Watanabe M, et al. In-situ production of bulk intermetallic-based nanocomposites and nanostructured intermetallics by high-pressure torsion. Scr Mater. 2012;66:386–389.
  • Edalati K, Toh S, Iwaoka H, et al. Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins. Scr Mater. 2012;67:814–817.
  • Lee S, Edalati K, Iwaoka H, et al. Formation of FeNi with L10-ordered structure using high-pressure torsion. Philos Mag Lett. 2014;94:639–646.
  • Edalati K, Daio T, Horita Z, et al. Evolution of lattice defects, disordered/ordered phase transformations and mechanical properties in Ni-Al-Ti intermetallics by high-pressure torsion. J Alloys Compd. 2013;563:221–228.
  • Edalati K, Emami H, Staykov A, et al. Formation of metastable phases in magnesium-titanium system by high-pressure torsion and their hydrogen storage performance. Acta Mater. 2015;99:150–156.
  • Bachmaier A, Schmauch J, Aboulfadl H, et al. On the process of co-deformation and phase dissolution in a hard-soft immiscible Cu-Co alloy system during high-pressure torsion deformation. Acta Mater. 2016;115:333–346.
  • Edalati K, Emami H, Ikeda Y, et al. New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion. Acta Mater. 2016;108:293–303.
  • Lopez-Gomez EI, Edalati K, Coimbroo DD, et al. FCC phase formation in immiscible Mg-Hf (magnesium-hafnium) system by high-pressure torsion. AIP Adv. 2020;10:055222.
  • Fujiwara K, Uehiro R, Edalati K, et al. New Mg-V-Cr BCC alloys synthesized by high-pressure torsion and ball milling. Mater Trans. 2018;59:741–746.
  • Duchaussoy A, Sauvage X, Edalati K, et al. Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles. Acta Mater. 2019;167:89–102.
  • Edalati K, Horita Z, Valiev RZ. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci Rep. 2018;8:6740.
  • Mohammadi A, Enikeev NA, Murashkin MY, et al. Developing age-hardenable Al-Zr alloy by ultra-severe plastic deformation: significance of supersaturation, segregation and precipitation on hardening and electrical conductivity. Acta Mater. 2021;203:116503.
  • Mohammadi A, Enikeev NA, Murashkin MY, et al. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. J Mater Sci Technol. 2021;91:78–89.
  • Edalati K, Akiba E, Horita Z. High-pressure torsion for new hydrogen storage materials. Sci Technol Adv Mater. 2018;19:185–193.
  • Edalati K, Li HW, Kilmametov A, et al. High-pressure torsion for synthesis of high-entropy alloys. Metals. 2021;11:1263.
  • Bulffingeri GB. De solidorum resistentia specimen [The resistance of solids]. Commentarii Academiae Scientiarum Imperialis Petropolitanae. 1735;4:164–181.
  • Hollomon JH. Tensile deformation. Trans AIME. 1945;162:268–290.
  • Langdon TG. Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater. 2013;61:7035–7059.
  • Edalati K, Horita Z. Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater Sci Eng A. 2011;528:7514–7523.
  • Kawasaki M. Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci. 2014;49:18–34.
  • Ito Y, Edalati K, Horita Z. High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship. Mater Sci Eng A. 2017;679:428–434.
  • Valiev RZ, Alexandrov IV, Zhu YT, et al. Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res. 2002;17:5–8.
  • Ovid'ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
  • Demirtas M, Purcek G. Room temperature superplaticity in fine/ultrafine grained materials subjected to severe plastic deformation. Mater Trans. 2019;60:1159–1167.
  • Pippan R, Hohenwarter A. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials. Mater Res Lett. 2016;4:127–136.
  • Wang CT, Gao N, Gee MG, et al. Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear. 2012;280-281:28–35.
  • Khatibi G, Horky J, Weiss B, et al. High cycle fatigue behaviour of copper deformed by high pressure torsion. Int J Fatigue. 2010;32:269–278.
  • Kral P, Dvorak J, Sklenicka V, et al. The characteristics of creep in metallic materials processed by severe plastic deformation. Mater Trans. 2019;60:1506–1517.
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607–610.
  • Jian WW, Cheng GM, Xu WZ, et al. Ultrastrong Mg alloy via nano-spaced stacking faults. Mater Res Lett. 2013;1:61–66.
  • Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915.
  • Horita Z, Ohashi K, Fujita T, et al. Achieving high strength and high ductility in precipitation-hardened alloys. Adv Mater. 2005;17:1599–1602.
  • Valiev RZ. On grain boundary engineering of UFG metals and alloys for enhancing their properties. Mater Sci Forum. 2008;584-586:22–28.
  • Saito T, Furuta T, Hwang JH, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300:464–467.
  • Cheng Z, Zhou H, Lu Q, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362. doi:https://doi.org/10.1126/science.aau1925.
  • Kuramoto S, Furuta T. Severe plastic deformation to achieve high strength and high ductility in Fe-Ni based alloys with lattice softening. Mater Trans. 2019;60:1116–1122.
  • Yang X, Pan H, Zhang J, et al. Progress in mechanical properties of gradient structured metallic materials induced by surface mechanical attrition treatment. Mater Trans. 2019;60:1543–1552.
  • Kuramoto S, Furuta T, Nagasako N, et al. Lattice softening for producing ultrahigh strength of iron base nanocrystalline alloy. Appl Phys Lett. 2009;95:211901.
  • Furuta T, Kuramoto S, Osuna T, etal Bulk nano-grained Fe-Ni-Co-Ti alloy processed by high pressure torsion: approaching ideal strength with improved ductility. In: Higashida K, Tsuji N, editors. Proceedings of the Second International Symposium on Steel Sciences. Kyoto: The Japan Institute of Metals; 2010; p. 151–154.
  • Furuta T, Kuramoto S, Horibuchi K, et al. Ultrahigh strength of nanocrystalline iron-based alloys produced by high-pressure torsion. J Mater Sci. 2010;45:4745–4753.
  • Edalati K, Toh S, Furuta T, et al. Development of ultrahigh strength and high ductility in nanostructured iron alloys with lattice softening and nanotwins. Scr Mater. 2012;67:511–514.
  • Furuta T, Kuramoto S, Osuna T, et al. Die-hard plastic deformation behavior in an ultrahigh-strength Fe-Ni-Al-C alloy. Scr Mater. 2015;101:87–90.
  • Edalati K, Furuta T, Daio T, et al. High strength and high uniform ductility in a severely deformed iron alloy by lattice softening and multimodal-structure formation. Mater Res Lett. 2015;3:197–202.
  • Ma Y, Yang M, Jiang P, et al. Plastic deformation mechanisms in a severely deformed Fe-Ni-Al-C alloy with superior tensile properties. Sci Rep. 2017;7:15619.
  • Miyazaki I, Furuta T, Oh-ishi K, et al. Overcoming the strength–ductility trade-off via the formation of a thermally stable and plastically unstable austenitic phase in cold-worked steel. Mater Sci Eng A. 2018;721:74–80.
  • Furuta T, Miyazaki I, Oh-ishi K, et al. Characterization of cold-rolled heterogeneous microstructure formed by multimodal deformation in an Fe-Ni-Al-C alloy with lattice softening. Mater Des. 2018;153:166–176.
  • Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29.
  • Zhu YT, Liao X. Retaining ductility. Nat Mater. 2004;3:351.
  • Wu X, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci. 2014;111:7197–7201.
  • Zhang Y, Yang C, Zhou D, et al. Effect of stacking fault energy on microstructural feature and back stress hardening in Cu-Al alloys subjected to surface mechanical attrition treatment. Mater Sci Eng A. 2019;740-741:235–242.
  • Yang X, Ma X, Moering J, et al. Influence of gradient structure volume fraction on the mechanical properties of pure copper. Mater Sci Eng A. 2015;645:280–285.
  • Yin Z, Sun L, Yang J, et al. Mechanical behavior and deformation kinetics of gradient structured Cu-Al alloys with varying stacking fault energy. J Alloys Compd. 2016;687:152–160.
  • Lin Y, Pan J, Zhou HF, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 2018;153:279–289.
  • Meng LF, Zhang Z, Zhang YL, et al. The influence of stacking fault energy on mechanical properties of Cu-Al-Zn alloys processed by surface mechanical attrition treatment. Mater Sci Eng A. 2019;744:235–240.
  • Qu S, An XH, Yang HJ, et al. Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing. Acta Mater. 2009;57:1586–1601.
  • Ferrasse S, Segal VM, Alford F, et al. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries. Mater Sci Eng A. 2008;493:130–140.
  • Serra G, Morais L, Elias CN, et al. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater Sci Eng C. 2013;33:4197–4202.
  • Valiev RZ, Murashkin MY, Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr Mater. 2014;76:13–16.
  • Hertzberg RW. Deformation and fracture mechanics of engineering materials. 4th ed New York: Wiley; 1996.
  • Hübner P, Kiessling R, Biermann H, et al. Fracture behaviour of ultrafine-grained materials under static and cyclic loading. Int J Mater Res. 2006;97:1566–1570.
  • Kimura Y, Inoue T, Yin F, et al. Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science. 2008;320:1057–1060.
  • Hohenwarter A, Kammerhofer C, Pippan R. The ductile to brittle transition of ultrafine-grained Armco iron: an experimental study. J Mater Sci. 2010;45:4805–4812.
  • Gizynski M, Pakiela Z, Chrominski W, et al. The low temperature fracture behaviour of hydrostatically extruded ultra-fine grained Armco iron. Mater Sci Eng A. 2015;632:35–42.
  • Semenova IP, Modina JM, Polyakov AV, et al. A fracture toughness at cryogenic temperatures of ultra fi ne-grained Ti-6Al-4V alloy processed by ECAP. Mater Sci Eng A. 2018;716:260–267.
  • Rybalchenko OV, Prosvirnin DV, Tokar AA, et al. Effect of ECAP on structural, mechanical and functional characteristics of the austenitic Cr-Ni-Ti steels. J Phys Conf Ser. 2018;1134:012049.
  • Hohenwarter A, Pippan R. Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms. Acta Mater. 2013;61:2973–2983.
  • Hohenwarter A, Pippan R. Anisotropic fracture behavior of ultrafine-grained iron. Mater Sci Eng A. 2010;527:2649–2656.
  • Hohenwarter A. Unpublished work; 2021.
  • Hohenwarter A, Pippan R. Fracture toughness evaluation of ultrafine-grained nickel. Scr Mater. 2011;64:982–985.
  • Hohenwarter A, Völker B, Kapp MW, et al. Ultra-strong and damage tolerant metallic bulk materials: a lesson from nanostructured pearlitic steel wires. Sci Rep. 2016;6:33228.
  • Ashby MF, Easterling KE, Harrysson R, et al. The fracture and toughness of woods. Proc R Soc Lond A Math Phys Sci. 1985;398:261–280.
  • Langdon TG. Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci. 2009;44:5998–6010.
  • Pearson CE. The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin. J Inst Metals. 1934;54:111–124.
  • Wang CT, He Y, Langdon TG. The significance of strain weakening and self-annealing in a superplastic Bi-Sn eutectic alloy processed by high-pressure torsion. Acta Mater. 2020;185:245–256.
  • Langdon TG. The mechanical properties of superplastic materials. Metall Trans A. 1982;13:689–701.
  • Langdon TG. The background to superplastic forming and opportunities arising from new developments. Solid State Phenom. 2020;306:1–8.
  • Valiev RZ, Salimonenko DA, Tsenev NK, et al. Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scr Mater. 1997;37:1945–1950.
  • Figueiredo RB, Langdon TG. Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing. Adv Eng Mater. 2008;10:37–40.
  • Horita Z, Furukawa M, Nemoto M, et al. Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 2000;48:1633–1640.
  • Kawasaki M, Langdon TG. Review: achieving superplastic properties in ultrafine-grained materials at high temperatures. J Mater Sci. 2016;51:19–32.
  • Kawasaki M, Langdon TG. The contribution of severe plastic deformation to research on superplasticity. Mater Trans. 2019;60:1123–1130.
  • Lin K, Li Z, Liu Y, et al. Exploiting tube high-pressure shearing to prepare a microstructure in Pb-Sn alloys for unprecedented superplasticity. Scr Mater. 2022;209:114390.
  • Ha TK, Chang YW. Effects of temperature and microstructure on the superplasticity in microduplex Pb-Sn alloys. Mater Sci Forum. 2001;357-359:159–164.
  • Padmanabhan KA, Davies GJ. Superplasticity, mechanical and structural aspects, environmental effects, fundamentals and applications. Berlin (NY): Springer-Verlag; 1980.
  • Langdon TG. Recent developments in high strain rate superplasticity. Mater Trans JIM. 1999;40:716–722.
  • Komura S, Horita Z, Furukawa M, et al. Influence of scandium on superplastic ductilities in an Al-Mg-Sc alloy. J Mater Res. 2000;15:2571–2576.
  • Langdon TG. A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater. 1994;42:2437–2443.
  • Kawasaki M, Langdon TG. Principles of superplasticity in ultrafine-grained materials. Mater Sci. 2007;42:1782–1796.
  • Tanaka T, Makii K, Ueda H, et al. Study on practical application of a new seismic damper using a Zn-Al alloy with a nanocrystalline microstructure. Int J Mech Sci. 2003;45:1599–1612.
  • Tanaka T, Higashi K. Superplasticity at room temperature in Zn-22Al alloy processed by equal-channel-angular extrusion. Mater Trans. 2004;45:1261–1265.
  • Tanaka T, Watanabe H, Higashi K. Microstructure in Zn-Al alloys after equal-channel-angular extrusion. Mater Trans. 2003;44:1891–1894.
  • Huang Y, Langdon TG. Characterization of deformation processes in a Zn-22% Al alloy using atomic force microscopy. J Mater Sci. 2002;37:4993–4498.
  • Yang CF, Pan JH, Chuang MC. Achieving high strain rate superplasticity via severe plastic deformation processing. J Mater Sci. 2008;43:6260–6266.
  • Demirtas M, Yanar H, Purcek G. Optimization of RT superplasticity of UFG Zn-22Al alloy by applying ECAP at different temperatures and phase regions. IOP Conf Ser Mater Sci Eng. 2017;194:012033.
  • Demirtas M, Purcek G, Yanar H, et al. Improvement of high strain rate and room temperature superplasticity in Zn-22Al alloy by two-step equal-channel angular pressing. Mater Sci Eng A. 2014;620:233–240.
  • Xia SH, Wang J, Wang JT, et al. Improvement of room-temperature superplasticity in Zn-22 wt.%Al alloy. Mater Sci Eng A. 2008;493:111–115.
  • Kumar P, Xu C, Langdon TG. Mechanical characteristics of a Zn-22% Al alloy processed to very high strains by ECAP. Mater Sci Eng A. 2006;429:324–328.
  • Hirata T, Tanaka T, Chung SW, et al. Relationship between deformation behavior and microstructural evolution of friction stir processed Zn-22 wt.% Al alloy. Scr Mater. 2007;56:477–480.
  • Demirtas M, Purcek G, Yanar H, et al. Achieving room temperature superplasticity in Zn-5Al alloy at high strain rates by equal-channel angular extrusion. J Alloys Compd. 2015;623:213–218.
  • Demirtas M, Purcek G, Yanar H, et al. Effect of equal-channel angular pressing on room temperature superplasticity of quasi-single phase Zn-0.3Al alloy. Mater Sci Eng A. 2015;644:17–24.
  • Mehrer H. Numerical data and functional relationship in science and technology, Diffusion in solid metals and alloys. Series 26, Berlin: Springer; 1990.
  • Langen G, Schwitzgebel G, Ruppersberg H. Thermodynamic and diffusion studies on solid (Li,Mg) and (Li,Cd) alloys. Mater Res Bull. 1984;19:1141–1147.
  • da Costa Andrade EN. On the viscous flow in metals, and allied phenomena. Proc R Soc London Series A. 1910;84:1–12.
  • Čadek J. Creep in metallic materials. Amsterdam: Elsevier Science Publishers; 1988.
  • Valiev RZ, Langdon TG. Achieving exceptional grain refinement through severe plastic deformation: new approaches for improving the processing technology. Metall Mater Trans A. 2011;42:2942–2951.
  • Grabovetskaya GP, Ivanov KV, Kolobov YR. Creep features of nanostructured materials produced by severe plastic deformation. Ann Chim Sci Mater. 2002;27:89–98.
  • Sklenicka V, Dvorak J, Svoboda M. Creep in ultrafine-grained aluminium. Mater Sci Eng A. 2004;387-389:696–701.
  • Sklenicka V, Dvorak J, Kral P, et al. Creep processes in pure aluminium processed by equal-channel angular pressing. Mater Sci Eng A. 2005;410-411:408–412.
  • Kostka A, Tak KG, Eggeler G. On the effect of equal-channel angular pressing on the creep of tempered martensite ferritic steels. Mater Sci Eng A. 2008;481-482:723–726.
  • Sklenicka V, Kral P, Dvorak J, et al. Effect of equal-channel angular pressing on the creep resistance of precipitation strengthened alloys. Mater Sci Forum. 2011;667-669:897–902.
  • Kral P, Dvorak J, Sklenicka V, et al. The effect of ultrafine-grained microstructure on creep behaviour of 9%Cr steel. Materials. 2018;11:787.
  • Waitz T, Antretter T, Fischer FD, et al. Size effects on the martensitic phase transformation of NiTi nanograins. J Mech Phys Solids. 2007;55:419–444.
  • Kozhushko VV, Paltauf G, Krenn H, et al. Attenuation of ultrasound in severely plastically deformed nickel. NDT E Int. 2011;44:261–266.
  • Mine Y, Tachibana K, Horita Z. Effect of hydrogen on tensile properties of ultrafine-grained type 310S austenitic stainless steel processed by high-pressure torsion. Metall Mater Trans A. 2011;42:1619–1629.
  • Menumerov E, Gilroy KD, Hajfathalian M, et al. Plastically deformed Cu-based alloys as high-performance catalysts for the reduction of 4-nitrophenol. Catal Sci Technol. 2016;6:5737–5745.
  • Chu F, Han B, Edalati K, et al. Severe plastic deformed Pd-based metallic glass for superior hydrogen evolution in both acidic and alkaline media. Scr Mater. 2021;204:114145.
  • Wu K, Chu F, Meng Y, et al. Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting. J Mater Chem A. 2021;9:12152–12160.
  • Straumal BB, Protasova SG, Mazilkin AA, et al. Effect of severe plastic deformation on the coercivity of Co-Cu alloys. Philos Mag Lett. 2009;89:649–654.
  • Dobatkin SV, Gubicza J, Shangina DV, et al. High strength and good electrical conductivity in Cu-Cr alloys processed by severe plastic deformation. Mater Lett. 2015;153:5–9.
  • Nishizaki T, Lee S, Horita Z, et al. Superconducting properties in bulk nanostructured niobium prepared by high-pressure torsion. Physica C. 2013;493:132–135.
  • Rogl G, Setman D, Schafler E, et al. High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation. Acta Mater. 2012;60:2146–2157.
  • Radiguet B, Etienne A, Pareige P, et al. Irradiation behavior of nanostructured 316 austenitic stainless steel. J Mater Sci. 2008;43:7338–7343.
  • Gao JH, Guan SK, Ren ZW, et al. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid. Mater Lett. 2011;65:691–693.
  • Faghihi S, Li D, Szpunar JA. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion. Nanotechnolgy. 2010;21:485703.
  • Nie FL, Zheng YF, Cheng Y, et al. In vitro corrosion and cytotoxicity on microcrystalline, nanocrystalline and amorphous NiTi alloy fabricated by high pressure torsion. Mater Lett. 2010;64:983–986.
  • Hirscher M, Yartys VA, Baricco M, et al. Materials for hydrogen-based energy storage-past, recent progress and future outlook. J. Alloys Compd. 2020;827:153548.
  • Shao H, He L, Lin H, et al. Progress and trends in magnesium-based materials for energy-storage research: a review. Energy Technol. 2018;6:445–458.
  • Zaluski L, Zaluska A, Tessier P, et al. Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi. J Alloys Compd. 1995;217:295–300.
  • Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J Alloys Compd. 1999;292:247–252.
  • Yavari AR, Moulec AL, de Castro FR, et al. Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition. Scr Mater. 2005;52:719–724.
  • de Castro JFR, Yavari AR, Moulec AL, et al. Improving sorption in MgH2 powders by addition of nanoparticles of transition metal fluoride catalysts and mechanical alloying. J Alloys Compd. 2005;389:270–274.
  • de Castro JFR, Santos SF, Costa ALM, et al. Structural characterization and dehydrogenation behavior of Mg-5at.%Nb nano-composite processed by reactive milling. J Alloys Compd. 2004;376:251–256.
  • Leiva DR, de Souza Villela AC, Paiva-Santos CO, et al. High-yield direct synthesis of Mg2FeH6 from the elements by reactive milling. Solid State Phenom. 2011;170:259–262.
  • Leiva DR, Jorge AM, Ishikawa TT, et al. Nanoscale grain refinement and H-sorption properties of MgH2 processed by high-pressure torsion and other mechanical routes. Adv Eng Mater. 2010;12:786–792.
  • Edalati K, Yamamoto A, Horita Z, et al. High-pressure torsion of pure magnesium: evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr Mater. 2011;64:880–883.
  • Botta WJ, Jorge AM, Veron M, et al. H-sorption properties and structural evolution of Mg processed by severe plastic deformation. J Alloys Compd. 2013;580:S187–S191.
  • Løken S, Solberg JK, Maehlen JP, et al. Nanostructured Mg-Mm-Ni hydrogen storage alloy: structure-properties relationship. J Alloys Compd. 2007;446-447:114–120.
  • Skripnyuk VM, Buchman E, Rabkin E, et al. The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg-Ni alloy. J Alloys Compd. 2007;436:99–106.
  • Skripnyuk VM, Rabkin E, Bendersky LA, et al. Hydrogen storage properties of as-synthesized and severely deformed magnesium - multiwall carbon nanotubes composite. Int J Hydrogen Energy. 2010;35:5471–5478.
  • Jorge Jr. AM, Prokofiev E, de Lima GF, et al. An investigation of hydrogen storage in magnesium-based alloys processed by equal-channel angular pressing. Int J Hydrogen Energy. 2013;38:8306–8312.
  • Skryabina N, Aptukov V, Romanov P, et al. Microstructure optimization of Mg-alloys by the ECAP process including numerical simulation, SPD treatments, characterization, and hydrogen sorption properties. Molecules. 2019;24:89.
  • de Rango P, Wen J, Skryabina N, et al. Hydrogen storage properties of Mg-Ni alloys processed by fast forging. Energies. 2020;13:3509.
  • Skryabina N, Aptukov V, de Rango P, et al. Effect of temperature on fast forging process of Mg-Ni samples for fast formation of Mg2Ni for hydrogen storage. Int J Hydrogen Energy. 2020;45:3008–3015.
  • de Rango P, Fruchart D, Aptukov V, et al. Fast forging: a new SPD method to synthesize Mg-based alloys for hydrogen storage. Int J Hydrogen Energy. 2020;45:7912–7916.
  • Leiva DR, Floriano R, Huot J, et al. Nanostructured MgH2 prepared by cold rolling and cold forging. J Alloys Compd. 2011;509:S444–S448.
  • Floriano R, Leiva DR, Carvalho JA, et al. Nanocrystalline Mg produced by cold rolling under inert atmosphere: a powerful tool for Mg activation. Int J Hydrogen Energy. 2014;39:4959–4965.
  • Lima GF, Triques MRM, Kiminami CS, et al. Hydrogen storage properties of pure Mg after the combined processes of ECAP and cold-rolling. J Alloys Compd. 2014;586:S405–S408.
  • Márquez JJ, Soyama J, Silva RA, et al. Processing of MgH2 by extensive cold rolling under protective atmosphere. Int J Hydrogen Energy. 2017;42:2201–2208.
  • Leiva DR, Jorge Jr. AM, Ishikawa TT, et al. Hydrogen storage in Mg and Mg-based alloys and composites processed by severe plastic deformation. Mater Trans. 2019;60:1561–1570.
  • Asselli AAC, Leiva DR, Huot J, et al. Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy. Int J Hydrogen Energy. 2015;40:16971–16976.
  • Soyama J, Triques MRM, Leiva DR, et al. Hydrogen storage in heavily deformed ZK60 alloy modified with 2.5 wt.% Mm addition. Int J Hydrogen Energy. 2016;41:4177–4184.
  • Révész Á, Gajdics M. High-pressure torsion of non-equilibrium hydrogen storage materials: a review. Energies. 2021;14:819.
  • Edalati K, Matsuda J, Iwaoka H, et al. High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int J Hydrogen Energy. 2013;38:4622–4627.
  • Edalati K, Matsuda J, Yanagida A, et al. Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and differences. Int J Hydrogen Energy. 2014;39:15589–15594.
  • Edalati K, Matsuda J, Arita M, et al. Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Appl Phys Lett. 2013;103:143902.
  • Edalati K, Matsuo M, Emami H, et al. Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics. Scr Mater. 2016;124:108–111.
  • Hongo T, Edalati K, Arita M, et al. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion. Acta Mater. 2015;92:46–54.
  • Gómez EIL, Edalati K, Antiqueira FJ, et al. Synthesis of nanostructured TiFe hydrogen storage material by mechanical alloying via high-pressure torsion. Adv Eng Mater. 2020;22:2000011.
  • Zhang LT, Ito K, Vasudevan VK, et al. Hydrogen absorption and desorption in a B2 single-phase Ti-22Al-27Nb alloy before and after deformation. Acta Mater. 2001;49:751–758.
  • Zhang LT, Ito K, Vasudevan VK, et al. Effects of cold-rolling on the hydrogen absorption/desorption behaviour of Ti-22Al-27Nb alloys. Mater Sci Eng A. 2002;329-331:362–366.
  • Ueda TT, Tsukahara M, Kamiya Y, et al. Preparation and hydrogen storage properties of Mg-Ni-Mg2Ni laminate composites. J Alloys Compd. 2005;386:253–257.
  • Lang J, Huot J. A new approach to the processing of metal hydrides. J Alloys Compd. 2011;509:L18–L22.
  • Huot J, Tousignant M. Effect of cold rolling on metal hydrides. Mater Trans. 2019;60:1571–1576.
  • Huot J, Cuevas F, Deledda S, et al. Mechanochemistry of metal hydrides: recent advances. Materials. 2019;12:2778.
  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38.
  • Bak T, Nowotny J, Rekas M, et al. Photo-electrochemical hydrogen generation from water using solar energy: materials-related aspects. Int J Hydrogen Energy. 2002;27:991–1022.
  • Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett. 2003;32:772–773.
  • Asahi R, Ohwaki T, Aoki K, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293:269–271.
  • Dachille F, Simons PY, Roy R. Pressure-temperature studies of anatase, brookite, rutile, and TiO2-II. Am Mineral. 1968;53:1929–1939.
  • Zhu T, Gao SP. The stability, electronic structure, and optical property of TiO2 polymorphs. J Phys Chem C. 2014;118:11385–11396.
  • de Gennes PG. Superconductivity of metals and alloys. New York (NY): Perseus Books Publishing, L.L.C.; 1999.
  • Tinkham M. Introduction to superconductivity. Singapore: McGraw-Hill Inc.; 1996.
  • Poole Jr. CP, Farach HA, Creswick RJ. Handbook of superconductivity. San Diego: Academic Press; 1995.
  • Onnes K. The resistance of pure mercury at helium temperature. Commun. Phys Univ Leiden. 1911;120b:261–263.
  • Onnes K. The disappearance of the resistance of mercury. Commun Phys Univ Leiden. 1911;122b:264–266.
  • Onnes K. On the sudden change in the rate at which the resistance of mercury disappears. Commun Phys Univ Leiden. 1911;124c:267–271.
  • Nishizaki T, Edalati K, Lee S, et al. Critical temperature in bulk ultrafine-grained superconductors of Nb, V, and Ta processed by high-pressure torsion. Mater Trans. 2019;60:1367–1376.
  • Mito M, Shigeoka S, Kondo H, et al. Hydrostatic compression effects on fifth-group element superconductors V, Nb, and Ta subjected to high-pressure torsion. Mater Trans. 2019;60:1472–1483.
  • Mito M, Matsui H, Tsuruta K, et al. Large enhancement of superconducting transition temperature in single-element superconducting rhenium by shear strain. Sci Rep. 2016;6:36337.
  • Hulm JK, Goodman BB. Superconducting properties of rhenium, ruthenium, and osmium. Phys Rev. 1957;106:659–671.
  • Jennings LD, Swenson CA. Pressure effects on Sn, In, Ta, Tl, and Hg. Phys Rev. 1958;112:31–43.
  • Smith TF. Pressure dependence of the superconducting transition temperature for vanadium. J Phys F. 1972;2:946–956.
  • Strongin M. Superconductivity in thin films and small particles. Physica. 1971;55:155–172.
  • Smirnova NA, Levit VI, Pilyugin VI, et al. Evolution of the structure of fcc single crystals during strong plastic deformation. Fiz Met Metalloved. 1986;61:1170–1177.
  • Harai Y, Ito Y, Horita Z. High-pressure torsion using ring specimens. Scr Mater. 2008;58:469–472.
  • Schilling JC. High-pressure effects. In: Schrieffer JR, editor. Handbook of High-Temperature Superconductivity. New York: Springer; 2007. p. 427–462.
  • Debessai M, Hamlin JJ, Schilling JS. Comparison of the pressure dependences of Tc in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures. Phys Rev B. 2008;78:064519.
  • Mito M, Kitamura Y, Tajiri T, et al. Hydrostatic pressure effects on superconducting transition of nanostructured niobium highly strained by high-pressure torsion. J Appl Phys. 2019;125:125901.
  • Rogl G, Rogl P, Bauer E, et al. Severe plastic deformation, a tool to enhance thermoelectric performance. In: Kuomoto K, Mori T, editors. Thermoelectric nanomaterials. Vol. 182. Heidelberg: Springer Series in Materials Science; 2013; p. 193–254.
  • Rogl G, Zehetbauer MJ, Rogl PF. The effect of severe plastic deformation on thermoelectric performance of skutterudites, half-heuslers and Bi-tellurides. Mater Trans. 2019;60:2071–2085.
  • Rogl G, Grytsiv A, Anbalagan R, et al. Direct SPD-processing to achieve high-ZT skutterudites. Acta Mater. 2018;159:352–363.
  • Rogl G, Yubuta K, Kerber M, et al. Sustainable and simple processing technique for n-type skutterudites with high ZT and their analysis. Acta Mater. 2019;173:9–19.
  • Rogl G, Ghosh S, Renk O, et al. HPT production of large bulk skutterudites. J Alloys Compd. 2021;854:156678.
  • Rogl G, Gosh S, Renk O, et al. Influence of shear strain on HPT-processed n-type skutterudites yielding ZT = 2.1. J Alloys Compd. 2021;855:157409.
  • Rogl G, Renk O, Ghosh S, et al. Properties of HPT-processed large bulks of p-type skutterudite DD0.7Fe3CoSb12 with ZT > 1.3. ACS Appl Energy Mater. 2021;4:4831–4844.
  • Rogl G, Grytsiv A, Rogl P, et al. . n-type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0. Acta Mater. 2014;63:30–43.
  • Rogl G, Grytsiv A, Heinrich P, et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X = Ge, Sn) reaching ZT > 1.3. Acta Mater. 2015;91:227–238.
  • Masuda S, Tsuchiya K, Qiang J, et al. Effect of high-pressure torsion on the microstructure and thermoelectric properties of Fe2VAl-based compounds. J Appl Phys. 2018;124:035106–9.
  • Rogl G, Ghosh S, Wang L, et al. Half-Heusler alloys: enhancement of ZT after severe plastic deformation. Acta Mater. 2020;183:285–300.
  • Yan X, Falmbigl M, Rogl G, et al. High-pressure torsion to improve thermoelectric efficiency of clathrates. J Electron Mater. 2013;42:1330–1334.
  • Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320:634–637.
  • Sun ZM, Hashimoto H, Keawprak N, et al. Effect of rotary-die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy. Mater Res. 2005;20:895–903.
  • Ashida M, Sumida N, Hasezaki K, et al. Effects of low rotational speed on crystal orientation of Bi2Te3-based thermoelectric semiconductors deformed by high-pressure torsion. Mater Trans. 2012;53:588–591.
  • Kim SI, Lee KH, Mun HA, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348:109–114.
  • Park JG, Lee YH. High thermoelectric performance of Bi-Te alloy: defect engineering strategy. Curr Appl Phys. 2016;16:1202–1215.
  • Rogl G, Rogl P. How severe plastic deformation changes the mechanical properties of thermoelectric skutterudites and half-Heusler alloys. Front Mater. 2020;7:600261.
  • Zinkle SJ, Was GS. Materials challenges in nuclear energy. Acta Mater. 2013;61:735–758.
  • Odette GR, Alinger MJ, Wirth BD. Recent developments in irradiation-resistant steels. Annu Rev Mater Res. 2008;38:471–503.
  • Rose M, Gorzawski G, Miehe G, et al. Phase stability of nanostructured materials under heavy ion irradiation. Nanostruct Mater. 1995;6:731–734.
  • Rose M, Balogh AG, Hahn H. Instability of irradiation induced defects in nanostructured materials. Nucl Instr Meth Phys Res B. 1997;127:119–122.
  • Chimi Y, Imase A, Ishikawa N, et al. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J Nucl Mater. 2001;297:355–357.
  • Samaras M, Derlet PM, Swygenhoven HV, et al. Computer simulation of displacement cascades in nanocrystalline Ni. Phys Rev Lett. 2002;88:125505.
  • Voegeli W, Able K, Hahn H. Simulation of grain growth in nanocrystalline nickel induced by ion irradiation. Nucl Instr Meth Phys Res B. 2003;202:230–235.
  • Beyerlein IJ, Caro A, Demkowicz MJ, et al. Radiation damage tolerant nanomaterials. Mater. Today. 2013;16:443–449.
  • Zhang X, Hattar K, Chen Y, et al. Radiation damage in nanostructured materials. Prog Mater Sci. 2018;96:217–321.
  • Sabirov I, Enikeev NA, Murashkin MY, et al. Bulk nanostructured materials with multifunctional properties. Cham: SpringerBriefs in Materials, Springer; 2015.
  • Nita N, Schaeublin R, Victoria M. Impact of irradiation on the microstructure of nanocrystalline materials. J Nucl Mater B. 2004;329-333:953–957.
  • Nita N, Schaeublin R, Victoria M, et al. Effects of irradiation on the microstructure and mechanical properties of nanostructured materials. Philos Mag. 2005;85:723–735.
  • Kilmametov AR, Gunderov DV, Valiev RZ, et al. Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy. Scr Mater. 2008;59:1027–1030.
  • Pareige P, Etienne A, Radiguet B. Experimental atomic scale investigation of irradiation effects in CW 316SS and UFG-CW 316SS. J Nucl Mater. 2009;389:259–264.
  • Rajan PBR, Monnet I, Hug E, et al. Irradiation resistance of a nanostructured 316 austenitic stainless steel. IOP Conf Ser Mater Sci Eng. 2014;63:012121.
  • Hug E, Prasath Babu R, Monnet I, et al. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels. Appl Surf Sci. 2017;392:1026–1035.
  • Shen TD. Radiation tolerance in a nanostructure: is smaller better. Nucl Instr Methods Phys Res Sect B. 2008;266:921–925.
  • Aydogan E, Chen T, Gigax JG, et al. Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions. J Nucl Mater. 2017;487:96–104.
  • Gigax JG, Kim H, Chen T, et al. Radiation instability of equal channel angular extruded T91 at ultra-high damage levels. Acta Mater. 2017;132:395–404.
  • Song M, Wu YD, Chen D, et al. Response of equal channel angular extrusion processed ultrafine-grained T91 steel subjected to high temperature heavy ion irradiation. Acta Mater. 2014;74:285–295.
  • Sun C, Zheng S, Wei CC, et al. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments. Sci Rep. 2015;5:7801.
  • Han W, Demkowicz MJ, Mara NA, et al. Design of radiation tolerant materials via interface engineering. Adv Mater. 2013;25:6975–6979.
  • Wurmshuber M, Frazer D, Bachmaier A, et al. Impact of interfaces on the radiation response and underlying defect recovery mechanisms in nanostructured Cu-Fe-Ag. Mater Des. 2018;160:1148–1157.
  • Shamardin VK, Goncharenko YD, Bulanova TM, et al. Effect of neutron irradiation on microstructure and properties of austenitic AISI 321 steel, subjected to equal-channel angular pressing. Rev Adv Mater Sci. 2012;31:167–173.
  • Alsabbagh A, Sarkar A, Miller B, et al. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel. Mater Sci Eng A. 2014;615:128–138.
  • Maksimkin OP, Gusev MN, Tsai KV, et al. Effect of neutron irradiation on the microstructure and the mechanical and corrosion properties of the ultrafine grained stainless Cr-Ni steel. Phys Met Metallogr. 2015;116:1270–1278.
  • Shamardin VK, Abramova MM, Bulanova TM, et al. Stability of the structure and properties of an ultrafine-grained Cr-Ni steel irradiated with neutrons in nuclear reactor core conditions. Mater Sci Eng A. 2018;712:365–372.
  • Mazilkin A, Ivanisenko Y, Sauvage X, et al. Nanostructured Fe-Cr-W steel exhibits enhanced resistance to self-ion irradiation. Adv Eng Mater. 2020;22:1901333.
  • Hoffman A, Arivu M, Wen H, et al. Enhanced resistance to irradiation induced ferritic transformation in nanostructured austenitic steels. Materialia. 2020;13:100806.
  • Shamardin VK, Bulanova TM, Fedoseev AE, et al. The effect of neutron irradiation on the impact toughness of austenitic stainless steel in ultrafine-grained state. J Nucl Mater. 2021;544:152680.
  • Enikeev NA, Shamardin VK, Radiguet B. Radiation tolerance of ultrafine-grained materials fabricated by severe plastic deformation. Mater Trans. 2019;60:1723–1731.
  • Foroulis ZA, Uhlig HH. Effect of cold-work on corrosion of iron and steel in hydrochloric acid. J Electrochem Soc. 1964;111:522–528.
  • Vinogradov A, Mimaki T, Hashimoto S, et al. On the corrosion behavior of ultra-fine grain copper. Scr Mater. 1999;41:319–326.
  • Fattah-Alhosseini A, Imantalab O. Effect of accumulative roll bonding process on the electrochemical behavior of pure copper. J Alloys Compd. 2015;632:48–52.
  • Nie M, Wang CT, Qu M, et al. The corrosion behaviour of commercial purity titanium processed by high-pressure torsion. J Mater Sci. 2014;49:2824–2831.
  • Pisarek M, Kedzierzawski P, Janik-Czachor M, et al. Effect of hydrostatic extrusion on the corrosion resistance of type316 stainless steel. Corrosion. 2008;64:131–137.
  • Kim HS, Kim WJ. Annealing effects on the corrosion resistance of ultrafine-grained pure titanium. Corr Sci. 2014;89:331–337.
  • Balusamy T, Kumar S, Narayanan TSNS. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel. Corr Sci. 2010;52:3826–3834.
  • Fattah-Alhosseini A, Attarzadeh FR, Vakili-Azghandi M. Effect of multi-pass friction stir processing on the electrochemical and corrosion behavior of pure titanium in strongly acidic solutions. Metall Mater Trans A. 2017;48:403–411.
  • Noel JN. Effects of metallurgical variables on aqueous corrosion. In: Cramer SD, Covino BSJ, editors. ASM Handbook. Vol. 13A, Corrosion: fundamentals, testing, and protection. Materials Park, OH: ASM International; 2003. p. 258.
  • Miyamoto H, Harada K, Mimaki T, et al. Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing. Corr Sci. 2008;50:1215–1220.
  • Miyamoto H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview. Mater Trans. 2016;57:559–572.
  • Ralston KD, Birbilis N, Davies CHJ. Revealing the relationship between grain size and corrosion rate of metals. Scr Mater. 2010;63:1201–1204.
  • Rifai M, Bagherpour E, Yamamoto G, et al. Transition of dislocation structures in severe plastic deformation and its effect on dissolution in dislocation etchant. Adv Mater Sci Eng. 2018;2018:4254156.
  • Rifai M, Miyamoto H, Fujiwara H. Effects of strain energy and grain size on corrosion resistance of ultrafine grained Fe-20%Cr steels with extremely low C and N fabricated by ECAP. Int J Corr. 2015;2015:386865.
  • Rifai M, Yuasa M, Miyamoto H. Enhanced corrosion resistance of ultrafine-grained Fe-Cr alloys with subcritical Cr contents for passivity. Metals. 2018;8:149.
  • Rifai M, Yuasa M, Miyamoto H. Effect of deformation structure and annealing temperature on corrosion of ultrafine-grained Fe-Cr alloy prepared by equal channel angular pressing. Int J Corr. 2018;2018:4853175.
  • Sieradzki K, Newman RC. A percolation model for passivation in stainless steels. J Electrochem Soc. 1986;133:1979–1980.
  • Miyamoto H, Yuasa M, Rifai M, et al. Corrosion behavior of severely deformed pure and single-phase materials. Mater Trans. 2019;60:1243–1255.
  • Hanawa T. Metals for biomedical devices. Oxford: Woodhead Publishing Limited; 2010.
  • Froes FH, Qian M. Titanium in medical and dental applications. Duxford: Woodhead Publishing; 2018.
  • Valiev RZ, Semenova IP, Latysh VV, et al. Nanostructured titanium for biomedical applications. Adv Eng Mater. 2008;10:B15–B17.
  • Gunderov DV, Polyakov AV, Semenova IP, et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater Sci Eng A. 2013;562:128–136.
  • Xu W, Wu X, Figueiredo RB, et al. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion. Int J Mater Res. 2009;100:1662–1667.
  • Valiev RZ, Sabirov I, Zemtsova EG, et al. Titanium in medical and dental applications. In: Froes F, Qian M, editors. Duxford, UK: Woodhead Publishing; 2018; p. 393–418.
  • Yilmazer H, Niinomi M, Nakai M, et al. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C. 2013;33:2499–2507.
  • Stráský J, Janeĉek M, Semenova I, et al. Titanium in medical and dental applications. In: Froes F, Qian M, Duxford: Woodhead Publishing; 2018. p. 455–475.
  • Yang J, Cui F, Lee IS. Surface modifications of magnesium alloys for biomedical applications. Ann Biomed Eng. 2011;39:1857–1871.
  • Dobatkin SV, Lukyanova EA, Martynenko NS, et al. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. IOP Conf Ser Mater Sci Eng. 2017;194:012004.
  • Parfenov EV, Kulyasova OB, Mukaeva VR, et al. Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corr Sci. 2020;163:108303.
  • Valiev RZ, Parfenov EV, Parfenova LV. Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Mater Trans. 2019;60:1356–1366.
  • Semenova IP, Klevtsov GV, Klevtsova NA, et al. Nanostructured titanium for maxillofacial mini-implants. Adv Eng Mater. 2016;18:12161224.
  • Estrin Y, Lapovok R, Medvedev AE, et al. Titanium in medical and dental applications. In: Froes F, Qian M, Duxford: Woodhead Publishing; 2018. p. 419–454.
  • Parfenov EV, Parfenova LV, Dyakonov GS, et al. Surface functionalization via PEO coating and RGD peptide for nanostructured titanium implants and their in vitro assessment. Surf Coat Technol. 2019;357:669–683.
  • Balasubramanian R, Nagumothu R, Parfenov E, et al. Development of nanostructured titanium implants for biomedical implants - a short review. Mater Today Proc. 2021;46:1195–1200.
  • Valiev RZ, Sabirov I, Zhilyaev AP, et al. Bulk nanostructured metals for innovative applications. JOM. 2012;64:1134–1142.
  • Polyakov AV, Dluhoš L, Dyakonov GS, et al. Recent advances in processing and application of nanostructured titanium for dental implants. Adv Eng Mater. 2015;17:1869–1875.
  • Branagan D, Frerichs A, Meacham B, et al. New mechanisms, enabling structures, and advanced properties resulting in a new class of 3rd generation AHSS sheet. SAE Technical Paper. 2014; No. 2014-01-0989.
  • https://www.tokkin.com/materials/high_parformance/ufgs.
  • https://www.komatsuseiki.co.jp/nanosus/.
  • Ono K. Size effects of high strength steel wires. Metals. 2019;9:240.