2,844
Views
3
CrossRef citations to date
0
Altmetric
Original Reports

Enhanced resistance to hydrogen embrittlement in a CrCoNi-based medium-entropy alloy via grain-boundary decoration of boron

, , , , , & show all
Pages 278-286 | Received 18 Oct 2021, Published online: 18 Feb 2022

References

  • Kimura A, Birnbaum H. Hydrogen induced grain boundary fracture in high purity nickel and its alloys—enhanced hydrogen diffusion along grain boundaries. Acta Metall. 1988;36(3):757–766.
  • Lassila D, Birnbaum H. Intergranular fracture of nickel: the effect of hydrogen-sulfur co-segregation. Acta Metall. 1987;35(7):1815–1822.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4(8):515–534.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158.
  • Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213–218.
  • Seol JB, Bae JW, Li Z, et al. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 2018;151:366–376.
  • Nygren KE, Bertsch KM, Wang S, et al. Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy. Curr Opin Solid State Mater Sci. 2018;22(1):1–7.
  • Pu Z, Chen Y, Dai LH. Strong resistance to hydrogen embrittlement of high-entropy alloy. Mater Sci Eng A. 2018;736:156–166.
  • Zhao Y, Lee D-H, Seok M-Y, et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr Mater. 2017;135:54–58.
  • Nygren KE, Wang S, Bertsch KM, et al. Hydrogen embrittlement of the equi-molar FeNiCoCr alloy. Acta Mater. 2018;157:218–227.
  • Luo H, Li Z, Raabe D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci Rep. 2017 Aug 29;7(1):9892.
  • Koyama M, Wang H, Verma VK, et al. Effects of Mn content and grain size on hydrogen embrittlement susceptibility of face-centered cubic high-entropy alloys. Metall Mater Trans A. 2020;51(11):5612–5616.
  • Ichii K, Koyama M, Tasan CC, et al. Localized plasticity and associated cracking in stable and metastable high-entropy alloys pre-charged with hydrogen. Procedia Struct Integ. 2018;13:716–721.
  • Soundararajan CK, Luo H, Raabe D, et al. Hydrogen resistance of a 1 GPa strong equiatomic CoCrNi medium entropy alloy. Corros Sci. 2020;167:108510.
  • Liu CT, White C, Horton J. Effect of boron on grain-boundaries in Ni3Al. Acta Metall. 1985;33(2):213–229.
  • Boniszewski T, Smith G. The influence of hydrogen on the plastic deformation ductility, and fracture of nickel in tension. Acta Metall. 1963;11(3):165–178.
  • Seol JB, Gu GH, Lim NS, et al. Atomic scale investigation on the distribution of boron in medium carbon steels by atom probe tomography and EELS. Ultramicroscopy. 2010;110(7):783–788.
  • Shi Y, Wang Y-D, Li S, et al. Mechanical behavior in boron-microalloyed CoCrNi medium-entropy alloy studied by in situ high-energy X-ray diffraction. Mater Sci Eng A. 2020;788:139600.
  • Bechtle S, Kumar M, Somerday BP, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 2009;57(14):4148–4157.
  • Martin M, Somerday B, Ritchie R, et al. Hydrogen-induced intergranular failure in nickel revisited. Acta Mater. 2012;60(6–7):2739–2745.
  • Kimura A, Kimura H. Effect of carbon on the hydrogen induced grain boundary fracture in iron. Nippon Kinzoku Gakkaishi (1952). 1983;47(10):807–813.
  • Shin K, Meshii M. Effect of sulfur segregation and hydrogen charging on intergranular fracture of iron. Acta Metall. 1983;31(10):1559–1566.
  • Koyama M, Ichii K, Tsuzaki K. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy. Int J Hydrogen Energy. 2019;44(31):17163–17167.
  • Thompson K, Lawrence D, Larson D, et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy. 2007;107(2-3):131–139.
  • Gault B, Moody MP, De Geuser F, et al. Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys. 2009;105(3):034913.
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817–2829.
  • Choudhury A, White C, Brooks C. The intergranular segregation of boron in Ni3Al: equilibrium segregation and segregation kinetics. Acta Metall Mater. 1992;40(1):57–68.
  • Swart PJ, Snoeij P. Hydrogen diffusivity in boron-doped polycrystalline Ni3Al. IEEE Trans Geosci Remote Sens. 1994;32(2):296–306.
  • Kontis P, Yusof HM, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy. Acta Mater. 2016;103:688–699.
  • Wu R, Freeman AJ, Olson GB. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science. 1994;265(5170):376–380.
  • Kulkov SS, Bakulin AV, Kulkova SE. Effect of boron on the hydrogen-induced grain boundary embrittlement in α-Fe. Int J Hydrogen Energy. 2018;43(3):1909–1925.
  • Geng W, Freeman AJ, Wu R, et al. Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a Σ5 nickel grain boundary. Phys Rev B. 1999;60(10):7149.
  • Jung CB, Lee KS. The effects of the addition of B and Fe and a prior deformation on the hydrogen embrittlement of nickel. Scr Mater. 1996;35(2):267–271.
  • Wan X, Chen Y, Shi D, et al. Effect of alloy stoichiometry and boron doping on the H2-induced environmental embrittlement of Ni3Fe intermetallics. Intermetallics. 2008;16(4):550–553.