1,943
Views
3
CrossRef citations to date
0
Altmetric
Original Reports

Strengthening mechanism of Ti-W composites with heterogeneous microstructures

, , &
Pages 352-359 | Received 20 Dec 2021, Published online: 22 Mar 2022

References

  • Zhao ST, Ell J, Yu Q, et al. Cryoforged nanotwinned titanium with ultrahigh strength and ductility. Science. 2021;373(6561):1363–1368.
  • Zhang DY, Qiu D, Gibson MA, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature. 2019;576(7785):91–95.
  • Badini C, Ubertalli G, Puppo D, et al. High temperature behaviour of a Ti-6Al-4V/TiCp composite processed by BE-CIP-HIP method. J Mater Sci. 2000;35(15):3903–3912.
  • Godfrey TMT, Wisbey A, Goodwin PS, et al. Microstructure and tensile properties of mechanically alloyed Ti–6A1–4 V with boron additions. Mater Sci Eng A. 2000;282(1):240–250.
  • Ni DR, Geng L, Zhang J, et al. Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti–B4C system. Scripta Mater. 2006;55(5):429–432.
  • Ni DR, Geng L, Zhang J, et al. Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti-B4C-C. Mater Sci Eng A. 2008;478(1-2):291–296.
  • Xu SH, Qiu JH, Zhang HB, et al. Evolution of nano-scaled lamellae and its effect on strength of Ti–Ta composite. Mater Sci Eng A. 2020;805(3-4):140552.
  • Xu SH, Du M, Li J, et al. Bio-mimic Ti–Ta composite with hierarchical “brick-and-mortar” microstructure. Materialia. 2019;8:100463.
  • Xu SH, Liu Y, Yang C, et al. Compositionally gradient Ti-Ta metal-metal composite with ultra-high strength. Mater Sci Eng A. 2018;712:386–393.
  • Cao YK, Zhang WD, Liu B, et al. Extraordinary tensile properties of titanium alloy with heterogeneous phase-distribution based on hetero-deformation induced hardening. Mater Res Lett. 2020;8(7):254–260.
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532.
  • Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7(10):393–398.
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151.
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci. 2015;112(47):14501.
  • Liu ZQ, Li RT, Wang Y, et al. High-performance titanium-based composite strengthened with in-situ network-distributed 3D reinforcements. Mater Sci Eng A. 2021;802:140572.
  • Liu BX, Huang LJ, Geng L. Elastic and plastic behaviors of laminated Ti-TiBw/Ti composites. J Wuhan Univ Technol, Mater Sci Ed. 2015;30(3):596–600.
  • Huang LJ, Wang S, Dong YS, et al. Tailoring a novel network reinforcement architecture exploiting superior tensile properties of in situ TiBw/Ti composites. Mater Sci Eng A. 2012;545:187–193.
  • Hayat MD, Singh H, He Z, et al. Titanium metal matrix composites: An overview. Composites. Part A. 2019;121:418–438.
  • Ranganath S, Vijayakumar M, Subrahmanyan J. Combustion-assisted synthesis of Ti-TiB-TiC composite via the casting route. Mater Sci Eng A. 1992;149(2):253–257.
  • Lu X, Pan Y, Li WB, et al. High-performance Ti composites reinforced with in-situ TiC derived from pyrolysis of polycarbosilane. Mater Sci Eng A. 2020;795:139924.
  • Zhang C, Guo ZM, Yang F, et al. In situ formation of low interstitials Ti-TiC composites by gas-solid reaction. J Alloys Compd. 2018;769:37–44.
  • Ma FC, Zhou JJ, Liu P, et al. Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites. Mater Charact. 2017;127:27–34.
  • Li SF, Kondoh K, Imai H, et al. Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB. Mater Sci Eng A. 2015;628:75–83.
  • Wu H, Lei CX, Du Y, et al. Microstructure and superior mechanical property of in situ (TiBw + TiCp)/Ti composites with laminated structure. Ceram Int. 2021;47(8):11423–11431.
  • Wu XL, Zhu YT, Lu K. Ductility and strain hardening in gradient and lamellar structured materials. Scripta Mater. 2020;186:321–325.
  • Hu ZY, Cheng XW, Li SL, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites. J Alloys Compd. 2017;726:240–253.
  • Lutjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A. 1998;243(1-2):32–45.
  • Chen SJ, Li LJ, Peng ZW, et al. On the correlation among continuous cooling transformations, interphase precipitation and strengthening mechanism in Ti-microalloyed steel. J Mate Res Technol. 2021;10:580–593.
  • Yurchenko NY, Panina ES, Zherebtsov SV, et al. Microstructure evolution of a novel low-density Ti–Cr–Nb–V refractory high entropy alloy during cold rolling and subsequent annealing. Mater Charact. 2019;158:109980.
  • Labusch R. A statistical theory of solid solution hardening. Phys Status Solidi. 1970;41(2):659–669.
  • Donachie M. Titanium: a technical guide. Ohio: ASM International; 2000.
  • Ramakrishnan N. An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater. 1996;44(1):69–77.
  • Lu WJ, Zhang D, Zhang XN, et al. Microstructure and tensile properties of in situ (TiB + TiC)/Ti6242 (TiB:TiC = 1:1) composites prepared by common casting technique. Mater Sci Eng A. 2001;311(1-2):142–150.
  • Zhang Q, Chen DL. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs. Scripta Mater. 2004;51(9):863–867.
  • Proville L, Rodney D, Marinica M-C. Quantum effect on thermally activated glide of dislocations. Nat Mater. 2012;11(10):845–849.
  • Brown LM, Stobbs WM. The work-hardening of copper-silica v. equilibrium plastic relaxation by secondary dislocations. Philo Mag. 1976;34(3):351–372.
  • Wolf SM. Properties and applications of dispersion-strengthened metals. JOM. 1967;19(6):22–28.
  • Yokota K, Bahador A, Shitara K, et al. Mechanisms of tensile strengthening and oxygen solid solution in single β-phase Ti-35 at.%Ta + O alloys. Mater Sci Eng A. 2021;802:140677.
  • Li DY, Fan GH, Huang XX, et al. Enhanced strength in pure Ti via design of alternating coarse- and fine-grain layers. Acta Mater. 2021;206:116627.
  • Park HK, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress. Mater Res Lett. 2018;6(5):261–267.
  • Zhang ZP, Qiao YJ, Sun Q, et al. Theoretical estimation to the cyclic strength coefficient and the cyclic strain-hardening exponent for metallic materials: preliminary study. J Mater Eng Perform. 2009;18(3):245–254.