1,083
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Universal Trend in the dynamic relaxations of tilted metastable grain boundaries during ultrafast thermal cycle

, ORCID Icon &
Pages 343-351 | Received 17 Dec 2021, Published online: 22 Mar 2022

References

  • Mishin Y, Asta M, Li J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 2010;58:1117–1151.
  • Khalajhedayati A, Pan Z, Rupert TJ. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat Commun. 2016;7:10802.
  • Hu J, Shi YN, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science. 2017;355:1292.
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556.
  • Frolov T, Olmsted DL, Asta M, et al. Structural phase transformations in metallic grain boundaries. Nat Commun. 2013;4:1899.
  • van Beers PRM, Kouznetsova VG, Geers MGD, et al. A multiscale model of grain boundary structure and energy: from atomistics to a continuum description. Acta Mater. 2015;82:513–529.
  • Olmsted DL, Foiles SM, Holm EA. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 2009;57:3694–3703.
  • Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci. 2014;18:253–261.
  • Han J, Vitek V, Srolovitz DJ. Grain-boundary metastability and its statistical properties. Acta Mater. 2016;104:259–273.
  • Balbus GH, Echlin MP, Grigorian CM, et al. Femtosecond laser rejuvenation of nanocrystalline metals. Acta Mater. 2018;156:183–195.
  • Choi N, Kulitckii V, Kottke J, et al. Analyzing the ‘non-equilibrium state’ of grain boundaries in additively manufactured high-entropy CoCrFeMnNi alloy using tracer diffusion measurements. J Alloys Compd. 2020;844:155757.
  • Mishin Y, Mehl MJ, Papaconstantopoulos DA, et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B. 2001;63:224106.
  • Tschopp MA, Coleman SP, McDowell DL. Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr Mater Manuf Innov. 2015;4:11.
  • Tschopp MA, McDowell DL. Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos Mag. 2007;87:3871–3892.
  • Tschopp MA, McDowell DL. Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium. Philos Mag. 2007;87:3147–3173.
  • Zhang H, Srolovitz DJ. Simulation and analysis of the migration mechanism of Σ5 tilt grain boundaries in an fcc metal. Acta Mater. 2006;54:623–633.
  • Zhong L, Wang J, Sheng H, et al. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature. 2014;512:177–180.
  • Wu C, Christensen MS, Savolainen J-M, et al. Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys Rev B. 2015;91:035413.
  • Wu C, Zhigilei LV. Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse. J Phys Chem C. 2016;120:4438–4447.
  • Cahn JW, Mishin Y, Suzuki A. Coupling grain boundary motion to shear deformation. Acta Mater. 2006;54:4953–4975.
  • Deng C, Schuh CA. Atomistic simulation of slow grain boundary motion. Phys Rev Lett. 2011;106:045503.
  • Holm EA, Foiles SM. How grain growth stops: a mechanism for grain-growth stagnation in pure materials. Science. 2010;328:1138.
  • Holm EA, Foiles SM. Grain growth stagnation caused by the grain boundary roughening transition. Mater Sci Forum. 2012;715-716:415–415.
  • Liao M, Xiao X, Chui ST, et al. Grain-boundary roughening in colloidal crystals. Phys Rev X. 2018;8:021045.
  • Bean JJ, McKenna KP. Origin of differences in the excess volume of copper and nickel grain boundaries. Acta Mater. 2016;110:246–257.
  • Aidhy DS, Zhang Y, Weber WJ. A fast grain-growth mechanism revealed in nanocrystalline ceramic oxides. Scr Mater. 2014;83:9–12.
  • Homer ER, Holm EA, Foiles SM, et al. Trends in grain boundary mobility: survey of motion mechanisms. JOM. 2014;66:114–120.
  • Olmsted DL, Holm EA, Foiles SM. Survey of computed grain boundary properties in face-centered cubic metals—II: grain boundary mobility. Acta Mater. 2009;57:3704–3713.
  • Deng CA, Schuh CA. Atomistic simulation of slow grain boundary motion. Phys Rev Lett. 2011;106:4.
  • Trautt ZT, Upmanyu M, Karma A. Interface mobility from interface random walk. Science. 2006;314:632–635.
  • Deng C, Schuh CA. Diffusive-to-ballistic transition in grain boundary motion studied by atomistic simulations. Phys Rev B. 2011;84:10.
  • Zhou XW, Dingreville R, Karnesky RA. Molecular dynamics studies of irradiation effects on hydrogen isotope diffusion through nickel crystals and grain boundaries. Phys Chem Chem Phys. 2018;20:520–534.
  • Mendelev MI, Srolovitz DJ, Ackland GJ, et al. Effect of Fe segregation on the migration of a non-symmetric Σ5 tilt grain boundary in Al. J Mater Res. 2011;20:208–218.
  • Alexander KC, Schuh CA. Exploring grain boundary energy landscapes with the activation-relaxation technique. Scr Mater. 2013;68:937–940.
  • Restrepo OA, Mousseau N, Trochet M, et al. Carbon diffusion paths and segregation at high-angle tilt grain boundaries in α-Fe studied by using a kinetic activation-relation technique. Phys Rev B. 2018;97:054309.
  • Kathleen CA, Christopher AS. Towards the reliable calculation of residence time for off-lattice kinetic Monte Carlo simulations. Modell Simul Mater Sci Eng. 2016;24:065014.
  • Barkema GT, Mousseau N. Event-based relaxation of continuous disordered systems. Phys Rev Lett. 1996;77:4358–4361.
  • Fan Y, Yildiz B, Yip S. Analogy between glass rheology and crystal plasticity: yielding at high strain rate. Soft Matter. 2013;9:9511–9514.
  • Suzuki A, Mishin Y. Atomic mechanisms of grain boundary diffusion: low versus high temperatures. J Mater Sci. 2005;40:3155–3161.
  • Alsayed AM, Islam MF, Zhang J, et al. Premelting at defects within bulk colloidal crystals. Science. 2005;309:1207–1210.
  • Liu C, Guan P, Fan Y. Correlating defects density in metallic glasses with the distribution of inherent structures in potential energy landscape. Acta Mater. 2018;161:295–301.
  • Fan Y, Iwashita T, Egami T. Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material. Nat Commun. 2017;8:15417.
  • Chakravarty C. Path integral simulations of quantum Lennard-Jones solids. J Chem Phys. 2002;116:8938–8947.
  • Stillinger FH, Weber TA. Lindemann melting criterion and the Gaussian core model. Phys Rev B. 1980;22:3790–3794.
  • Sarkar S, Jana C, Bagchi B. Breakdown of universal Lindemann criterion in the melting of Lennard-Jones polydisperse solids. J Chem Sci. 2017;129:833–840.
  • Mishin Y. Atomistic modeling of the γ and γ′-phases of the Ni–Al system. Acta Mater. 2004;52:1451–1467.
  • Utt D, Stukowski A, Albe K. Grain boundary structure and mobility in high-entropy alloys: a comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe. Acta Mater. 2020;186:11–19.
  • Helfferich J, Lyubimov I, Reid D, et al. Inherent structure energy is a good indicator of molecular mobility in glasses. Soft Matter. 2016;12:5898–5904.
  • Reid DR, Lyubimov I, Ediger MD, et al. Age and structure of a model vapour-deposited glass. Nat Commun. 2016;7:13062.
  • Zhang S, Liu C, Fan Y, et al. Soft-mode parameter as an indicator for the activation energy spectra in metallic glass. J Phys Chem Lett. 2020;11:2781–2787.
  • Zhang H, Srolovitz DJ, Douglas JF, et al. Grain boundaries exhibit the dynamics of glass-forming liquids. Proc Natl Acad Sci USA. 2009;106:7735–7740.
  • Sharp TA, Thomas SL, Cubuk ED, et al. Machine learning determination of atomic dynamics at grain boundaries. Proc Natl Acad Sci USA. 2018;115:10943.
  • Bai Z, Balbus GH, Gianola DS, et al. Mapping the kinetic evolution of metastable grain boundaries under non-equilibrium processing. Acta Mater. 2020;200:328–337.
  • Rupert TJ, Schuh CA. Mechanically driven grain boundary relaxation: a mechanism for cyclic hardening in nanocrystalline Ni. Philos Mag Lett. 2012;92:20–28.
  • Perrin AE, Schuh CA. Stabilized nanocrystalline alloys: the intersection of grain boundary segregation with processing science. Annu Rev Mater Res. 2021;51:241–268.
  • Rupert TJ. The role of complexions in metallic nano-grain stability and deformation. Curr Opin Solid State Mater Sci. 2016;20:257–267.
  • Janssens KGF, Olmsted D, Holm EA, et al. Computing the mobility of grain boundaries. Nat Mater. 2006;5:124–127.
  • Thomas SL, Chen K, Han J, et al. Reconciling grain growth and shear-coupled grain boundary migration. Nat Commun. 2017;8:1764.