1,504
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

First-principles core energies of isolated basal and prism screw dislocations in magnesium

&
Pages 360-368 | Received 16 Jul 2021, Published online: 22 Mar 2022

References

  • Hull D, Bacon D. Introduction to dislocations. 5th. Oxford: Butterworth-Heinemann; 2011.
  • Hirth JP, Lothe J. Theory of dislocations. 2nd ed. New York: Wiley; 1982.
  • Usami S, Ando Y, Tanaka A, et al. Correlation between dislocations and leakage current of p–n diodes on a free-standing gan substrate. Appl Phys Lett. 2018;112:Article ID 182106.
  • Wang T, Carrete J, Mingo N, et al. Phonon scattering by dislocations in gan. ACS Appl Mater Interfaces. 2019;11:8175–8181.
  • Wang J, You H, Guo H, et al. Do all screw dislocations cause leakage in gan-based devices? Appl Phys Lett. 2020;116:Article ID 062104.
  • Chen YS, Lu H, Liang J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science. 2020;367:171–175.
  • Chen L, Xiong X, Tao X, et al. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance. Corros Sci. 2020;166:Article ID 108428.
  • Garbrecht M, Saha B, Schroeder JL, et al. Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution. Sci Rep. 2017;7:Article ID 46092.
  • Ding Q, Li S, Chen LQ, et al. Re segregation at interfacial dislocation network in a nickel-based superalloy. Acta Mater. 2018;154:137–146.
  • Wu Z, Curtin WA. Mechanism and energetics of 〈c+a〉 dislocation cross-slip in hcp metals. Proc Natl Acad Sci. 2016;113:11137–11142.
  • Caillard D. Kinetics of dislocations in pure Fe. Part I. In situ straining experiments at room temperature. Acta Mater. 2010;58:3493–3503.
  • Caillard D. Kinetics of dislocations in pure Fe. Part II. in situ straining experiments at low temperature. Acta Mater. 2010;58:3504–3515.
  • Rhode SK, Horton MK, Kappers MJ, et al. Mg doping affects dislocation core structures in gan. Phys Rev Lett. 2013;111:Article ID 025502.
  • Cai W, Bulatov VV, Chang J, et al. Dislocations in solids (chapter 64—dislocation core effects on mobility). Amsterdam: Elsevier; 2004.
  • Clouet E. Elastic energy of a straight dislocation and contribution from core tractions. Philos Mag. 2009;89:1565–1584.
  • Cho J, Junge T, Molinari JF, et al. Toward a 3D coupled atomistic and discrete dislocation dynamics simulation: dislocation core structures and peierls stresses with several character angles in fcc aluminum. Adv Model Simul Eng Sci. 2015;2:Article ID 12.
  • Lehtinen A, Granberg F, Laurson L, et al. Multiscale modeling of dislocation-precipitate interactions in Fe: from molecular dynamics to discrete dislocations. Phys Rev E. 2016;93:Article ID 013309.
  • Hu Y, Szajewski BA, Rodney D, et al. Atomistic dislocation core energies and calibration of non-singular discrete dislocation dynamics. Model Simul Mater Sci Eng. 2019;28:Article ID 015005.
  • Lee DW, Kim H, Strachan A, et al. Effect of core energy on mobility in a continuum dislocation model. Phys Rev B. 2011;83:Article ID 104101.
  • Beyerlein IJ, Hunter A. Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics. Philos Trans R Soc A. 2016;374:Article ID 20150166.
  • Kim H, Mathew N, Luscher DJ, et al. Phase field dislocation dynamics (PFDD) modeling of non-schmid behavior in BCC metals informed by atomistic simulations. J Mech Phys Solids. 2021;152:Article ID 104460.
  • Chou Y, Eshelby J. The energy and line tension of a dislocation in a hexagonal crystal. J Mech Phys Solids. 1962;10:27–34.
  • Shadrake LG, Guiu F. Dislocations in polyethylene crystals: line energies and deformation modes. Philos Mag. 1976;34:565–581.
  • Wallow F, Neite G, Schröer W, et al. Stiffness constants, dislocation line energies, and tensions of Ni 3Al and of the γ′-phases of NIMONIC 105 and of NIMONIC PE16. Phys Status Solidi (a). 1987;99:483–490.
  • Prinz F, Kirchner HOK, Schoeck G. Dislocation core energies in the peierls model. Philos Mag A. 1978;38:321–332.
  • Foreman A. Dislocation energies in anisotropic crystals. Acta Metall. 1955;3:322–330.
  • Schoeck G. The Peierls dislocation: line energy, line tension, dissociation and deviation. Acta Mater. 1997;45:2597–2605.
  • Bulatov VV, Kaxiras E. Semidiscrete variational peierls framework for dislocation core properties. Phys Rev Lett. 1997;78:4221–4224.
  • Lu G, Kioussis N, Bulatov VV, et al. Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys Rev B. 2000;62:3099–3108.
  • Lu G, Kioussis N, Bulatov VV, et al. Dislocation core properties of aluminum: a first-principles study. Mater Sci Eng A. 2001;309-310:142–147.
  • Pei Z, Ma D, Friák M, et al. From generalized stacking fault energies to dislocation properties: five-energy-point approach and solid solution effects in magnesium. Phys Rev B. 2015;92:Article ID 064107.
  • Zhou XW, Sills RB, Ward DK, et al. Atomistic calculations of dislocation core energy in aluminium. Phys Rev B. 2017;95:Article ID 054112.
  • Xu K, Niu LL, Jin S, et al. Atomistic simulations of screw dislocations in bcc tungsten: from core structures and static properties to interaction with vacancies. Nucl Instrum Methods Phys Res Sect B. 2017;393:174–179.
  • Wang G, Strachan A, Cagin T, et al. Molecular dynamics simulations of 12a〈111〉 screw dislocation in Ta. Mater Sci Eng A. 2001;309-310:133–137.
  • Yang C, Qi L. Modified embedded-atom method potential of niobium for studies on mechanical properties. Comput Mater Sci. 2019;161:351–363.
  • Girshick A, Pettifor DG, Vitek V. Atomistic simulation of titanium. II. Structure of 13〈1210〉 screw dislocations and slip systems in titanium. Philos Mag A. 1998;77:999–1012.
  • Ghazisaeidi M, Trinkle D. Core structure of a screw dislocation in Ti from density functional theory and classical potentials. Acta Mater. 2012;60:1287–1292.
  • Yasi JA, Nogaret T, Trinkle DR, et al. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Model Simul Mater Sci Eng. 2009;17:Article ID 055012.
  • Wu Z, Curtin W. Intrinsic structural transitions of the pyramidal I 〈c+a〉 islocation in magnesium. Scr Mater. 2016;116:104–107.
  • Buey D, Ghazisaeidi M. Atomistic simulation of 〈c+a〉 screw dislocation cross-slip in Mg. Scr Mater. 2016;117:51–54.
  • Wu Z, Ahmad R, Yin B, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science. 2018;359:447–452.
  • Duesbery MS, Joos B, Michel DJ. Dislocation core studies in empirical silicon models. Phys Rev B. 1991;43:5143–5146.
  • Carrez P, Godet J, Cordier P. Atomistic simulations of 12〈110〉 screw dislocation core in magnesium oxide. Comput Mater Sci. 2015;103:250–255.
  • Béré A, Serra A. Atomic structure of dislocation cores in GaN. Phys Rev B. 2002;65:Article ID 205323.
  • Yazdandoost F, Mirzaeifar R. Generalized stacking fault energy and dislocation properties in niti shape memory alloys. J Alloys Compd. 2017;709:72–81.
  • Sengupta S, Nielaba P, Binder K. Elastic moduli, dislocation core energy, and melting of hard disks in two dimensions. Phys Rev E. 2000;61:6294–6301.
  • Yu P., Cui Y., Zhu Guo-zhen, et al. The key role played by dislocation core radius and energy in hydrogen interaction with dislocations. Acta Mater. 2020;185:518–527.
  • Li J, Wang CZ, Chang JP, et al. Core energy and peierls stress of a screw dislocation in bcc molybdenum: a periodic-cell tight-binding study. Phys Rev B. 2004;70:Article ID 104113.
  • Elsner J, Jones R, Sitch PK, et al. Theory of threading edge and screw dislocations in gan. Phys Rev Lett. 1997;79:3672–3675.
  • Belabbas I, Chen J, Heggie MI, et al. Core properties and mobility of the basal screw dislocation in wurtzite GaN: a density functional theory study. Model Simul Mater Sci Eng. 2016;24:Article ID 075001.
  • Iyer M, Radhakrishnan B, Gavini V. Electronic-structure study of an edge dislocation in aluminum and the role of macroscopic deformations on its energetics. J Mech Phys Solids. 2015;76:260–275.
  • Das S, Gavini V. Electronic structure study of screw dislocation core energetics in aluminum and core energetics informed forces in a dislocation aggregate. J Mech Phys Solids. 2017;104:115–143.
  • Shin I, Carter EA. Orbital-free density functional theory simulations of dislocations in magnesium. Model Simul Mater Sci Eng. 2011;20:Article ID 015006.
  • Das S. Large scale electronic structure studies on the energetics of dislocations in al-mg materials system and its connection to mesoscale models [dissertation]. Ann Arbor, MI: University of Michigan; 2019.
  • Clouet E, Ventelon L, Willaime F. Dislocation core energies and core fields from first principles. Phys Rev Lett. 2009;102:Article ID 055502.
  • Clouet E. Dislocation core field. I. Modeling in anisotropic linear elasticity theory. Phys Rev B. 2011;84:Article ID 224111.
  • Clouet E, Ventelon L, Willaime F. Dislocation core field. II. Screw dislocation in iron. Phys Rev B. 2011;84:Article ID 224107.
  • Dezerald L, Ventelon L, Clouet E, et al. Ab initio modeling of the two-dimensional energy landscape of screw dislocations in BCC transition metals. Phys Rev B. 2014;89:Article ID 024104.
  • Cai W, Bulatob VV, Chang J, et al. Periodic image effects in dislocation modelling. Philos Mag. 2003;83:539–567.
  • Chetty N, Martin RM. First-principles energy density and its applications to selected polar surfaces. Phys Rev B. 1992;45:6074–6088.
  • Yu M, Trinkle DR, Martin RM. Energy density in density functional theory: application to crystalline defects and surfaces. Phys Rev B. 2011;83:Article ID 115113.
  • Kainer KU. Magnesium alloys and their applications. Weinheim: Wiley-VCH; 2000.
  • Friedrich HE, Mordike BL. Magnesium technology. 1st ed. Berlin: Springer-Verlag; 2006.
  • Pollock TM. Weight loss with magnesium alloys. Science. 2010;328:986–987.
  • Joost WJ. Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. JOM. 2012;64:1032–1038.
  • Yasi JA, Hector LG, Trinkle DR. Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Mater. 2012;60:2350–2358.
  • Sun DY, Mendelev MI, Becker CA, et al. Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of mg. Phys Rev B. 2006;73:Article ID 024116.
  • Wu Z, Francis MF, Curtin WA. Magnesium interatomic potential for simulating plasticity and fracture phenomena. Model Simul Mater Sci Eng. 2014;23:Article ID 015004.
  • Tan AMZ, Trinkle DR. Computation of the lattice green function for a dislocation. Phys Rev E. 2016;94:Article ID 023308.
  • Trinkle DR. Lattice green function for extended defect calculations: computation and error estimation with long-range forces. Phys Rev B. 2008;78:Article ID 014110.
  • Yasi JA, Trinkle DR. Direct calculation of lattice green function with arbitrary interactions for general crystals. Phys Rev E. 2012;85:Article ID 066706.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47:558–561.
  • Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49:14251–14269.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186.
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50.
  • Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45:13244–13249.
  • Methfessel M, Paxton AT. High-precision sampling for brillouin-zone integration in metals. Phys Rev B. 1989;40:3616–3621.
  • Itakura M, Kaburaki H, Yamaguchi M, et al. Atomistic study on the cross-slip process of a screw 〈a〉 dislocation in magnesium. Model Simul Mater Sci Eng. 2015;23:Article ID 065002.
  • Tsuru T, Chrzan DC. Effect of solute atoms on dislocation motion in Mg: an electronic structure perspective. Sci Rep. 2015;5(1):Article ID 8793.