1,619
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Structural and thermoelectric properties of CH3NH3SnI3 perovskites processed by applying high pressure with shear strain

, , &
Pages 521-529 | Received 10 Jan 2022, Published online: 19 Apr 2022

References

  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–114.
  • Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321:1457–1461.
  • Mao J, Zhu H, Ding Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science. 2019;365:495–498.
  • He W, Wang D, Wu H, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science. 2019;365:1418–1424.
  • Hao F, Stoumpos CC, Cao DH, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photonics. 2014;8:489–494.
  • Huang YQ, Su J, Li QF, et al. Structure, optical and electrical properties of CH3NH3SnI3 single crystal. Physica B: Condens Matter. 2019;563:107–112.
  • Wu LJ, Zhao YQ, Chen CW, et al. First-principles hybrid functional study of the electronic structure and charge carrier mobility in perovskite CH3NH3SnI3. Chinese Phys B. 2016;25:107202.
  • Feng J, Xiao B. Effective masses and electronic and optical properties of nontoxic MASnX3 (X = Cl, Br, and I) perovskite structures as solar cell absorber: a theoretical study using HSE06. J Phys Chem C. 2014;118:19655–19660.
  • Sharma VK, Kanchana V, Gupta MK, et al. Ultra-low thermal conductivity of orthorhombic CH3NH3SnI3: a first principles investigation. J Solid State Chem. 2020;290:121541.
  • He Y, Galli G. Perovskites for solar thermoelectric applications: a first principles study of CH3NH3AI3 (A = Pb and Sn). Chem Mater. 2014;26:5394–5400.
  • Zhao T, Wang D, Shuai Z. Doping optimization of organic-inorganic hybrid perovskite CH3NH3PbI3 for high thermoelectric efficiency. Synth Met. 2017;225:108–114.
  • Wu P, Xiong Y, Sun L, et al. Enhancing thermoelectric performance of the CH3NH3PbI3 polycrystalline thin films by using the excited state on photoexcitation. Org Electron. 2018;55:90–96.
  • Pisoni A, Jaćimović J, Barišić OS, et al. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3. J Phys Chem Lett. 2014;5:2488–2492.
  • Zheng F, Saldana-Greco D, Liu S, et al. Material innovation in advancing organometal halide perovskite functionality. J Phys Chem Lett. 2015;6:4862–4872.
  • Zeng Q, Sheng H, Ding Y, et al. Long-range topological order in metallic glass. Science. 2011;332:1404–1406.
  • Sun L, Chen XJ, Guo J, et al. Re-emerging superconductivity at 48 K in iron chalcogenides. Nature. 2012;483:67–69.
  • Bu K, Luo H, Guo S, et al. Pressure-regulated dynamic stereochemical role of lone-pair electrons in layered Bi2O2S. J Phys Chem Lett. 2020;11:9702–9707.
  • Lü X, Wang Y, Stoumpos CC, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv Mater. 2016;28:8663–8668.
  • Lü X, Stoumpos C, Hu Q, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites. Natl Sci Rev. 2021;8:nwaa288.
  • Guo S, Zhao Y, Bu K, et al. Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7. Angew Chem Int Ed. 2020;59:17533–17539.
  • Guo S, Bu K, Li J, et al. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features. J Am Chem Soc. 2021;143:2545–2551.
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979.
  • Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A. 2016;652:325–352.
  • Bridgman PW. Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev. 1935;48:825–847.
  • Fujita I, Edalati P, Wang Q, et al. Novel black bismuth oxide (Bi2O3) with enhanced photocurrent generation, produced by high-pressure torsion straining. Scr Mater. 2020;187:366–370.
  • Edalati P, Wang Q, Razavi-Khosroshahi H, et al. Photocatalytic hydrogen evolution on a high-entropy oxide. J Mater Chem A. 2020;8:3814–3821.
  • Fujita I, Edalati K, Wang Q, et al. High-pressure torsion to induce oxygen vacancies in nanocrystals of magnesium oxide: enhanced light absorbance, photocatalysis and significance in geology. Materialia. 2020;11:100670.
  • Wang Q, Edalati K, Fujita I, et al. High-pressure torsion of SiO2 quartz sand: phase transformation, optical properties, and significance in geology. J Am Ceram Soc. 2020;103:6594–6602.
  • Wang Q, Watanabe M, Edalati K. Visible-light photocurrent in nanostructured high-pressure TiO2-II (Columbite) phase. J Phys Chem C. 2020;124:13930–13935.
  • Hidalgo-Jimenez J, Wang Q, Edalati K, et al. Phase transformations, vacancy formation and variations of optical and photocatalytic properties in TiO2-ZnO composites by high pressure torsion. Int J Plast. 2020;124:170–185.
  • Wang Q, Edalati K, Koganemura Y, et al. Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO2) produced by high-pressure torsion. J Mater Chem A. 2020;8:3643–3650.
  • Edalati K, Wang Q, Eguchi H, et al. Impact of TiO2-II phase stabilized in anatase matrix by high-pressure torsion on electrocatalytic hydrogen production. Mater Res Lett. 2019;7:334–339.
  • Razavi-Khosroshah H, Fuji M. Development of metal oxide high-pressure phases for photocatalytic properties by severe plastic deformation. Mater Trans. 2019;60:1203–1208.
  • Ikoma Y. Severe plastic deformation of semiconductor materials using high-pressure torsion. Mater Trans. 2019;60:1168–1176.
  • Edalati K, Fujiwara K, Takechi S, et al. Improved photocatalytic hydrogen evolution on tantalate perovskites CsTaO3 and LiTaO3 by strain-induced vacancies. ACS Appl Energy Mater. 2020;3:1710–1718.
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189.
  • Tang Y, Murayama M, Edalati K, et al. Phase transformations in Al-Ti-Mg powders consolidated by high-pressure torsion: experiments and first-principles calculations. J Alloys Compd. 2021;889:161815.
  • Tang Y, Goto W, Hirosawa S, et al. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloys by means of spinodal decomposition. Acta Mater. 2017;131:57–64.
  • Ashida M, Sumida N, Hasezaki K, et al. Effects of low rotational speed on crystal orientation of Bi2Te3-based thermoelectric semiconductors deformed by high-pressure torsion. Mater Trans. 2012;53:588–591.
  • Ashida M, Hamachiyo T, Hasezaki K, et al. Effect of high-pressure torsion on crystal orientation to improve the thermoelectric property of a Bi2Te3-based thermoelectric semiconductor. Adv Mat Res. 2010;89-91:41–46.
  • Edalati K, Uehiro R, Takechi S, et al. Enhanced photocatalytic hydrogen production on GaN-ZnO oxynitride by introduction of nitrogen vacancy complexes. Acta Mater. 2020;185:149–156.
  • Nishizaki T, Edalati K, Lee S, et al. Critical temperature in bulk ultrafine-grained superconductors of Nb, V and Ta processed by high-pressure torsion. Mater Trans. 2019;60:1367–1376.
  • Mito M, Shigeoka S, Kondo H, et al. Hydrostatic compression effects on fifth-group element superconductors V, Nb and Ta subjected to high-pressure torsion. Mater Trans. 2019;60:1472–1483.
  • Smidstrup S, Markussen T, Vancraeyveld P, et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Matter. 2020;32:015901.
  • The Materials Project. Materials data on LiTaO3 by materials project [dataset]. 2020 Jul 16. Available from: https://doi.org/https://doi.org/10.17188/1207210.
  • Quarti C, Grancini G, Mosconi E, et al. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J Phys Chem Lett. 2014;5:279–284.
  • Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33–39.
  • Kubelka P, Munk F. An article on optics of paint layers. Z Tech Phys. 1931;12:593609.
  • Tan M, Wang S, Rao F, et al. Pressures tuning the band gap of organic-inorganic trihalide perovskites (MAPbBr3): a first-principles study. J Electron Mater. 2018;47:7204–7211.
  • Zhang R, Cai W, Bi T, et al. Effects of nonhydrostatic stress on structural and optoelectronic properties of methylammonium lead bromide perovskite. J Phys Chem Lett. 2017;8:3457–3465.
  • Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116:12123–12149.
  • Cutler M, Leavy J, Fitzpatrick R. Electronic transport in semimetallic cerium sulfide. Phys Rev. 1964;33:A1143–A1152.
  • Ma Y, Eremets M, Oganov AR, et al. Transparent dense sodium. Nature. 2009;458:182–185.
  • Peter Y, Cardona M. Fundamentals of semiconductors: physics and materials properties. Berlin: Springer Science & Business Media; 2010.
  • Kittel C. Introduction to solid state physics. Hoboken (NJ): Wiley; 2005.
  • Altermatt PP, Schenk A, Geelhaar F, et al. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. J Appl Phys. 2003;93:1598–1604.