4,273
Views
9
CrossRef citations to date
0
Altmetric
Brief Overview

Recent progress and perspectives on advanced flexible Zn-based batteries with hydrogel electrolytes

, , , , , , , & show all
Pages 501-520 | Received 13 Dec 2021, Published online: 19 Apr 2022

References

  • Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun. 2016;7:1–8.
  • Trung TQ, Ramasundaram S, Hwang BU, et al. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater. 2016;28:502–509.
  • Liu W, Song MS, Kong B, et al. Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater. 2017;29:1603436.
  • Wang Q, Ping P, Zhao X, et al. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–224.
  • Chen Y, Kang Y, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem. 2021;59:83–99.
  • Zhang H, Liu X, Li H, et al. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew Chem Int Ed. 2021;60:598–616.
  • Wang F, Wu X, Li C, et al. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ Sci. 2016;9:3570–3611.
  • Xu Y, Xu C, An Q, et al. Robust LiTi2(PO4)3 microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. J Mater Chem A. 2017;5:13950–13956.
  • Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy. 2019;62:550–587.
  • Fang G, Zhou J, Pan A, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018;3:2480–2501.
  • Wang C, Pei Z, Meng Q, et al. Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew Chem Int Ed. 2021;60:990–997.
  • Yang Q, Li Q, Liu Z, et al. Dendrites in Zn-based batteries. Adv Mater. 2020;32:2001854.
  • Yi Z, Chen G, Hou F, et al. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater. 2021;11:2003065.
  • Zampardi G, La Mantia F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: current challenges and future perspectives. Curr Opin Electroche. 2020;21:84–92.
  • Guo X, Zhou J, Bai C, et al. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater Today Energy. 2020;16:100396.
  • Selvakumaran D, Pan A, Liang S, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A. 2019;7:18209–18236.
  • Wang Z, Li H, Tang Z, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater. 2018;28:1804560.
  • Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35:3–23.
  • Huang Y, Liu J, Wang J, et al. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew Chem Int Ed. 2018;57:9810–9813.
  • Wang H, Liu J, Wang J, et al. Concentrated hydrogel electrolyte-enabled aqueous rechargeable NiCo||Zn battery working from 20 to 50 °C. ACS Appl Mat Interf. 2018;11:49–55.
  • Chen R, Xu X, Peng S, et al. A flexible and safe aqueous zinc–air battery with a wide operating temperature range from −20 to 70 °C. ACS Sustain Chem Eng. 2020;8:11501–11511.
  • Ma L, Chen S, Li X, et al. Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte. Angew Chem Int Ed. 2020;132:24044–24052.
  • Huang Y, Li Z, Pei Z, et al. Solid-state rechargeable Zn//NiCo and Zn–air batteries with ultralong lifetime and high capacity: The role of a sodium polyacrylate hydrogel electrolyte. Adv Energy Mater. 2018;8:1802288.
  • Liu Z, Liang G, Zhan Y, et al. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy. 2019;58:732–742.
  • Sun J-Y, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature. 2012;489:133–136.
  • Wang J, Huang Y, Liu B, et al. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Mater. 2021;41:599–605.
  • Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater. 2018;28:1704195.
  • Taylor DL, Panhuis IHM. Self-healing hydrogels. Adv Mater. 2016;28:9060–9093.
  • Peng H, Lv Y, Wei G, et al. A flexible and self-healing hydrogel electrolyte for smart supercapacitor. J Power Sources. 2019;431:210–219.
  • Guo Y, Zheng K, Wan P. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small. 2018;14:1704497.
  • Song Z, Ding J, Liu B, et al. A rechargeable Zn–air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier. Adv Mater. 2020;32:1908127.
  • Fan X, Liu J, Song Z, et al. Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. Nano Energy. 2019;56:454–462.
  • Choudhury N, Sampath S, Shukla A. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci. 2009;2:55–67.
  • Zhao F, Bae J, Zhou X, et al. Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv Mater. 2018;30:1801796.
  • Gong JP. Materials both tough and soft. Science. 2014;344:161–162.
  • Kwon HJ, Osada Y, Gong JP. Polyelectrolyte gels-fundamentals and applications. Polym J. 2006;38:1211–1219.
  • Wu K, Huang J, Yi J, et al. Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives. Adv Energy Mater. 2020;10:1903977.
  • Li P, Jin Z, Peng L, et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv Mater. 2018;30:1800124.
  • Wang K, Zhang X, Han J, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl Mat Interf. 2018;10:24573–24582.
  • Wang K, Zhang X, Li C, et al. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv Mater. 2015;27:7451–7457.
  • Jin X, Sun G, Zhang G, et al. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 2019;12:1199–1206.
  • Huang Y, Zhong M, Shi F, et al. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew Chem Int Ed. 2017;56:9141–9145.
  • Liu J, Guan C, Zhou C, et al. A flexible quasi-solid-state nickel–zinc battery with high energy and power densities based on 3D electrode design. Adv Mater. 2016;28:8732–8739.
  • Huang S, Wan F, Bi S, et al. A self-healing integrated all-in-one zinc-ion battery. Angew Chem. 2019;131:4357–4361.
  • Karan S, Sahu TB, Sahu M, et al. Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2]. Ionics. 2017;23:2721–2726.
  • Li H, Liu Z, Liang G, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano. 2018;12:3140–3148.
  • Ma L, Chen S, Li H, et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ Sci. 2018;11:2521–2530.
  • Zhu X, Yang H, Cao Y, et al. Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution. Electrochim Acta. 2004;49:2533–2539.
  • Liu J, Hu M, Wang J, et al. An intrinsically 400% stretchable and 50% compressible NiCo//Zn battery. Nano Energy. 2019;58:338–346.
  • Han Q, Chi X, Zhang S, et al. Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J Mater Chem A. 2018;6:23046–23054.
  • Wang Z, Ruan Z, Liu Z, et al. A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J Mater Chem A. 2018;6:8549–8557.
  • Zhang S, Yu N, Zeng S, et al. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J Mater Chem A. 2018;6:12237–12243.
  • Shi Y, Zhang J, Pan L, et al. Energy gels: a bio-inspired material platform for advanced energy applications. Nano Today. 2016;11:738–762.
  • Zhao F, Shi Y, Pan L, et al. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc Chem Res. 2017;50:1734–1743.
  • Rong Q, Lei W, Chen L, et al. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew Chem Int Ed. 2017;56:14159–14163.
  • Liu Q, Nian G, Yang C, et al. Bonding dissimilar polymer networks in various manufacturing processes. Nat Commun. 2018;9:1–11.
  • Yang H, Liu Z, Chandran BK, et al. Self-protection of electrochemical storage devices via a thermal reversible sol–gel transition. Adv Mater. 2015;27:5593–5598.
  • Liu H, Xiong C, Tao Z, et al. Zwitterionic copolymer-based and hydrogen bonding-strengthened self-healing hydrogel. RSC Adv. 2015;5:33083–33088.
  • Kakuta T, Takashima Y, Nakahata M, et al. Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest- monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater. 2013;25:2849–2853.
  • Nakahata M, Takashima Y, Yamaguchi H, et al. Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun. 2011;2:1–6.
  • Hu M, Wang J, Liu J, et al. A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability. Energy Storage Mater. 2019;21:174–179.
  • Luo F, Sun TL, Nakajima T, et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv Mater. 2015;27:2722–2727.
  • Wei Z, He J, Liang T, et al. Autonomous self-healing of poly (acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem. 2013;4:4601–4605.
  • Huang Y, Zhong M, Huang Y, et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun. 2015;6:1–8.
  • Huang S, Zhu J, Tian J, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem Eur J. 2019;25:14480–14494.
  • Shi Y, Chen Y, Shi L, et al. An overview and future perspectives of rechargeable zinc batteries. Small. 2020;16:2000730.
  • Naveed A, Yang H, Yang J, et al. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew Chem Int Ed. 2019;58:2760–2764.
  • Naveed A, Yang H, Shao Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv Mater. 2019;31:1900668.
  • Yi J, Guo S, He P, et al. Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ Sci. 2017;10:860–884.
  • Xu C, Li B, Du H, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed. 2012;124:957–959.
  • Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun. 2017;8:1–9.
  • Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed. 2019;131:16508–16517.
  • Kundu D, Vajargah SH, Wan L, et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ Sci. 2018;11:881–892.
  • Zhang L, Chen L, Zhou X, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater. 2015;5:1400930.
  • Shi B, Li Z, Fan Y. Implantable energy-harvesting devices. Adv Mater. 2018;30:1801511.
  • Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 2017;11:9614–9635.
  • Duan J, Xie W, Yang P, et al. Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries. Nano Energy. 2018;48:569–574.
  • Fang G, Zhu C, Chen M, et al. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater. 2019;29:1808375.
  • Zeng Y, Zhang X, Meng Y, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv Mater. 2017;29:1700274.
  • Qiu W, Li Y, You A, et al. High-performance flexible quasi-solid-state Zn–MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J Mater Chem A. 2017;5:14838–14846.
  • Li H, Han C, Huang Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci. 2018;11:941–951.
  • Chen X, Zhong C, Liu B, et al. Atomic layer Co3O4 nanosheets: the key to knittable Zn–air batteries. Small. 2018;14:1702987.
  • Li Y, Zhong C, Liu J, et al. Atomically thin mesoporous Co3O4 layers strongly coupled with n-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc–air batteries. Adv Mater. 2018;30:1703657.
  • Huang Y, Ip WS, Lau YY, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano. 2017;11:8953–8961.
  • Zamarayeva AM, Gaikwad AM, Deckman I, et al. Fabrication of a high-performance flexible silver–zinc wire battery. Adv Electron Mater. 2016;2:1500296.
  • Zeng S, Tong X, Zhou S, et al. All-in-one bifunctional oxygen electrode films for flexible Zn-air batteries. Small. 2018;14:1803409.
  • Li L, Lou Z, Chen D, et al. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small. 2018;14:1702829.
  • Liu Z, Wang D, Tang Z, et al. A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Mater. 2019;23:636–645.
  • Pei Z, Ding L, Wang C, et al. Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc-air batteries. Energy Environ Sci. 2021;14:4926–4935.
  • Pei Z, Yuan Z, Wang C, et al. A flexible rechargeable zinc–air battery with excellent low-temperature adaptability. Angew Chem Int Ed. 2020;132:4823–4829.
  • Liu Y, Zhou X, Bai Y, et al. Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem Eng J. 2021;417:127955.
  • Chen M, Zhou W, Wang A, et al. Anti-freezing flexible aqueous Zn-MnO2 batteries working at −35°C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J Mater Chem A. 2020;8:6828–6841.
  • Mo F, Liang G, Meng Q, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ Sci. 2019;12:706–715.
  • Chen M, Chen J, Zhou W, et al. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv Mater. 2021;33:2007559.
  • Adebahr J, Byrne N, Forsyth M, et al. Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles. Electrochim Acta. 2003;48:2099–2103.
  • Yang C-C. Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH. Mater Sci Eng B-Adv. 2006;131:256–262.
  • Mo F, Liang G, Wang D, et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat. 2019;1:e12008.
  • Zhao J, Sonigara KK, Li J, et al. A smart flexible zinc battery with cooling recovery ability. Angew Chem Int Ed. 2017;129:7979–7983.
  • Mo F, Li H, Pei Z, et al. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci Bull. 2018;63:1077–1086.
  • Yang P, Feng C, Liu Y, et al. Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv Energy Mater. 2020;10:2002898.
  • Liu J, Long J, Shen Z, et al. A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes. Adv Sci. 2021;8:2004689.
  • Wang S, Liu N, Su J, et al. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano. 2017;11:2066–2074.
  • Wang Z, Tao F, Pan Q. A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors. J Mater Chem A. 2016;4:17732–17739.
  • Tao F, Qin L, Wang Z, et al. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl Mat Interfaces. 2017;9:15541–15548.
  • Guo Y, Zhou X, Tang Q, et al. A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. J Mater Chem A. 2016;4:8769–8776.
  • He Z, Wu C, Hua M, et al. Bioinspired multifunctional anti-icing hydrogel. Matter. 2020;2:723–734.
  • An L, Huang B, Zhang Y, et al. Interfacial defect engineering for improved portable zinc–air batteries with a broad working temperature. Angew Chem Int Ed. 2019;131:9559–9563.