2,465
Views
6
CrossRef citations to date
0
Altmetric
Original Reports

Dynamic mechanisms of strengthening and softening of coherent twin boundary via dislocation pile-up and cross-slip

ORCID Icon, , , , , , & show all
Pages 539-546 | Received 10 Jan 2022, Published online: 21 Apr 2022

References

  • Sansoz F, Lu K, Zhu T, et al. Strengthening and plasticity in nanotwinned metals. MRS Bull. 2016;41(4):292–297.
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349–352.
  • Shao S, Wang J, Beyerlein IJ, et al. Glide dislocation nucleation from dislocation nodes at semi-coherent {1 1 1} Cu–Ni interfaces. Acta Mater. 2015;98:206–220.
  • Kacher J, Robertson IM. Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel. Acta Mater. 2012;60(19):6657–6672.
  • Issa I, Joly-Pottuz L, Amodeo J, et al. From dislocation nucleation to dislocation multiplication in ceramic nanoparticle. Materials Research Letters. 2021;9(6):278–283.
  • Zhu YT, Wu XL, Liao XZ, et al. Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater. 2011;59(2):812–821.
  • Lu L, Zhu T, Shen Y, et al. Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Mater. 2009;57(17):5165–5173.
  • Sangid MD, Ezaz T, Sehitoglu H, et al. Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 2011;59(1):283–296.
  • Jin Z-H, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 2008;56(5):1126–1135.
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57(1):1–62.
  • Li N, Wang J, Misra A, et al. Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 2011;59(15):5989–5996.
  • Wang J, Zhou Q, Shao S, et al. Strength and plasticity of nanolaminated materials. Materials Research Letters. 2017;5(1):1–19.
  • Basinski ZS, Mitchell TE. Stresses on secondary systems due to piled-up groups of dislocations of arbitrary orientation. Philos Mag. 1966;13(121):103–114.
  • Yu W, Wang Z. Interactions between edge lattice dislocations and Σ11 symmetrical tilt grain boundaries in copper: A quasi-continuum method study. Acta Mater. 2012;60(13-14):5010–5021.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Materials Research Letters. 2016;4(3):145–151.
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters. 2019;7(10):393–398.
  • Rao SI, Dimiduk DM, El-Awady JA, et al. Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation. Acta Mater. 2010;58(17):5547–5557.
  • Malka-Markovitz A, Mordehai D. Cross-slip in face-centered cubic metals: A general escaig stress-dependent activation energy line tension model. Philos Mag. 2018;98(5):347–370.
  • Xu S, Xiong L, Chen Y, et al. Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni. Acta Mater. 2017;122:412–419.
  • Armstrong RW. Hall–petch description of nanopolycrystalline Cu, Ni and Al strength levels and strain rate sensitivities. Philos Mag. 2016;96(29):3097–3108.
  • Ohmura T, Minor AM, Stach EA, et al. Dislocation–grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope. J Mater Res. 2011;19(12):3626–3632.
  • Liu Y, Jian J, Chen Y, et al. Plasticity and ultra-low stress induced twin boundary migration in nanotwinned Cu by in situ nanoindentation studies. Appl Phys Lett. 2014;104(23):231910.
  • Bufford D, Liu Y, Wang J, et al. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat Commun. 2014 Sep 10;5:4864.
  • Han X, Zhang J, Mao S, et al. inventors; Beijing University of Technology, assignee. Double-tilt sample holder for transmission electron microscope. Patent US10103000B2. 2018 Oct 16.
  • Han X, Li Z, Mao S, et al. inventors; Beijing University of Technology, assignee. A double-tilt in-situ nanoindentation platform for transmission electron microscope. Patent US10410822B2. 2019 Sep 10.
  • Wang X, Mao S, Zhang J, et al. MEMS device for quantitative in situ mechanical testing in electron microscope. Micromachines (Basel). 2017;8(2):31.
  • Zhang J, Zhang H, Ye H, et al. Twin boundaries merely as intrinsically kinematic barriers for screw dislocation motion in FCC metals. Sci Rep. 2016 Mar 10;6:22893.
  • Hazzledine PM, Hirsch PB. A critical examination of the long-range stress theory of work-hardening. Philos Mag. 1967;15(133):121–159.
  • Feng G, Qu S, Huang Y, et al. An analytical expression for the stress field around an elastoplastic indentation/contact. Acta Mater. 2007;55(9):2929–2938.
  • Volterra V. Sur l’équilibre des corps élastiques multiplement connexes. Ann Sci Ecole Norm. 1907;24(24):401–517.
  • Windle AH, Smith GC. The effect of hydrogen on the plastic deformation of nickel single crystals. Met Sci J. 1968;2(1):187–191.
  • Chowdhury PB, Sehitoglu H, Rateick RG. Predicting fatigue resistance of nano-twinned materials: part I – role of cyclic slip irreversibility and peierls stress. Int J Fatigue. 2014;68:277–291.
  • Ramírez BR, Ghoniem N, Po G. Ab initiocontinuum model for the influence of local stress on cross-slip of screw dislocations in fcc metals. Physical Review. Part B. 2012;86(9):094115.
  • Madec R, Devincre B, Kubin LP. Simulation of dislocation patterns in multislip. Scr Mater. 2002;47(10):689–695.
  • Hussein AM, Rao SI, Uchic MD, et al. Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals. Acta Mater. 2015;85:180–190.
  • Wang L, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale. Science. 2022;375(6586):1261–1265.
  • Wang L, Guan P, Teng J, et al. New twinning route in face-centered cubic nanocrystalline metals. Nat Commun. 2017;8(1):1–7.
  • Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;510(7504):250–253.