1,612
Views
3
CrossRef citations to date
0
Altmetric
Original Reports

Significant pressure-induced enhancement of photoelectric properties of WS2 in the near-infrared region

, , , , , , , , & show all
Pages 547-555 | Received 07 Feb 2022, Published online: 22 Apr 2022

References

  • Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22(1):93–97.
  • Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays. J Appl Phys. 2009;105(9):091101.
  • Lin CH, Liu CW. Metal-insulator-semiconductor photodetectors. Sensors. 2010;10(10):8797–8826.
  • Tong XW, Zhang ZX, Wang D, et al. Inorganic CsBi3I10 perovskite/silicon heterojunctions for sensitive, self-driven and air-stable NIR photodetectors. J Mater Chem C. 2019;7(4):863–870.
  • Jacoutot P, Scaccabarozzi AD, Zhang TY, et al. Infrared organic photodetectors employing ultralow bandgap polymer and non-hullerene acceptors for biometric monitoring. Small. 2022;18(15):2200580.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–191.
  • Neto AH C, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys. 2009;81(1):109–162.
  • Island JO, Steele GA, van der Zant HSJ, et al. Environmental instability of few-layer black phosphorus. 2D Mater. 2015;2(1):011002.
  • Singh AK, Kumbhakar P, Krishnamoorthy A, et al. Review of strategies toward the development of alloy two-dimensional (2D) transition metal dichalcogenides. Iscience. 2021;24(12):103532.
  • Kumbhakar P, Chowde Gowda C, Tiwary CS. Advance optical properties and emerging applications of 2D materials. Front Mater. 2021;8:721514.
  • Murali A, Lokhande G, Deo KA, et al. Emerging 2D nanomaterials for biomedical applications. Mater Today. 2021;50:276–302.
  • Zheng L, Wang XW, Jiang HJ, et al. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2022;15(3):2413–2432.
  • Bernardi M, Palummo M, Grossman JC. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013;13(8):3664–3670.
  • Chhowalla M, Shin HS, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263–275.
  • Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater. 2015;27(45):7261–7284.
  • Choi W, Choudhary N, Han GH, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today. 2017;20(3):116–130.
  • Lu QP, Yu YF, Ma QL, et al. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater. 2016;28(10):1917–1933.
  • Siddique S, Gowda CC, Demiss S, et al. Emerging two-dimensional tellurides. Mater Today. 2021;51:402–426.
  • Xie C, Zeng L, Zhang Z, et al. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale. 2018;10(32):15285–15293.
  • Kumbhakar P, Gowda CC, Mahapatra PL, et al. Emerging 2D metal oxides and their applications. Mater Today. 2021;45:142–168.
  • Coleman JN, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331(6017):568–571.
  • Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011;11(12):5111–5116.
  • Li H, Lu G, Wang Y, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small. 2013;9(11):1974–1981.
  • Xie C, Mak C, Tao X, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater. 2017;27(19):1603886.
  • Zhao WJ, Ghorannevis Z, Chu LQ, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. Acs Nano. 2013;7(1):791–797.
  • Cong CX, Shang JZ, Wu X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv Opt Mater. 2014;2(2):131–136.
  • Gusakova J, Wang XL, Shiau LL, et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method). Phys Status Solidi A. 2017;214(12):1700218.
  • Perea-Lopez N, Elias AL, Berkdemir A, et al. Photosensor device based on few-layered WS2 films. Adv Funct Mater. 2013;23(44):5511–5517.
  • Zeng LH, Tao LL, Tang CY, et al. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci Rep. 2016;6:20343.
  • Lan CY, Zhou ZY, Zhou ZF, et al. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 2018;11(6):3371–3384.
  • Li JY, Han JF, Li HX, et al. Large-area, flexible broadband photodetector based on WS2 nanosheets films. Mat Sci Semicon Proc. 2020;107:104804.
  • Yao JD, Zheng ZQ, Shao JM, et al. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale. 2015;7(36):14974–14981.
  • Abid PS, Islam SS. Broadband photodetection in wide temperature range: layer-by-layer exfoliation monitoring of WS2 bulk using microscopy and spectroscopy. J Appl Phys. 2019;125(15):154303.
  • Wang HT, Yuan HT, Hong SS, et al. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev. 2015;44(9):2664–2680.
  • Yang LM, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014;14(11):6275–6280.
  • Ou TJ, Liu CL, Yan HC, et al. Effects of pressure on the ionic transport and photoelectrical properties of CsPbBr3. Appl Phys Lett. 2019;114(6):062105.
  • Guo SH, Bu KJ, Li JW, et al. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features. J Am Chem Soc. 2021;143(6):2545–2551.
  • Bu KJ, Luo H, Guo SH, et al. Pressure-regulated dynamic stereochemical role of lone-pair electrons in layered Bi2O2S. J Phys Chem Lett. 2020;11(22):9702–9707.
  • Wen T, Zhang Q, Li NN, et al. Structural phase transition, optical and electrical property evolutions of thiospinel AgIn5S8 under high pressure. lnorg Chem. 2019;58(19):12628–12634.
  • Li ZL, Li HY, Liu NN, et al. Pressure engineering for extending spectral response range and enhancing photoelectric properties of iodine. Adv Opt Mater. 2021;9(21):2101163.
  • Yuan YF, Zhang ZT, Wang WK, et al. Pressure-induced enhancement of optoelectronic properties in PtS2. Chinese Phys B. 2018;27(6):066201.
  • Wang P, Wang YG, Qu JY, et al. Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide. Phys Rev B. 2018;97(23):235202.
  • Tiong KK, Ho CH, Huang YS. The electrical transport properties of ReS2 and ReSe2 layered crystals. Solid State Commun. 1999;111(11):635–640.
  • Zhao YD, Qiao JS, Yu P, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv Mater. 2016;28(12):2399–2407.
  • Sato Y, Nishimura T, Duanfei D, et al. Intrinsic electronic transport properties and carrier densities in PtS2 and SnSe2: exploration of n(+)-source for 2D tunnel FETs. Adv Electron Mater. 2021;7(12):2100292.
  • Cui Q, He J, Bellus MZ, et al. Transient absorption measurements on anisotropic monolayer ReS2. Small. 2015;11(41):5565–5571.
  • Nayak AP, Yuan Z, Cao B, et al. Pressure-modulated conductivity, carrier density, and mobility of multi layered tungsten disulfide. Acs Nano. 2015;9(9):9117–9123.
  • Jäger-Waldau A, Lux-Steiner MC, Jäger-Waldau G, et al. WS2 thin films prepared by sulphurization. Appl Surf Sci. 1993;70:731–736.
  • Shang JM, Chen P, Zhang LM, et al. The electronic and optical properties of tungsten disulfide under high pressure. Chem Phys Lett. 2016;651:257–260.
  • Esfandiari M, Kamaei S, Rajabali M, et al. Formation of few- and monolayered WS2 sheets using plasma-treated dimethyl-sulfoxide solvent-based exfoliation. Phys Status Solidi. 2020;14(2):1900396.
  • Ahmad H, Rashid H. 405 nm ultraviolet photodetector based on tungsten disulphide thin film grown by drop casting method. J Mod Opt. 2019;66(18):1836–1840.
  • Chen Y. Growth of a large, single-crystalline WS2 monolayer for high-performance photodetectors by chemical vapor deposition. Micromachines. 2021;12(2):137.
  • Lan CY, Kang XL, Wei RJ, et al. Utilizing a NaOH promoter to achieve large single-domain monolayer WS2 films via modified chemical vapor deposition. Acs Appl Mater Inter. 2019;11(38):35238–35246.
  • Lan CY, Li C, Yin Y, et al. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale. 2015;7(14):5974–5980.
  • Huo NY, Yang SX, Wei ZM, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci Rep. 2014;4:5209.
  • Xie C, Lu XT, Ma MR, et al. Catalyst-free vapor-solid deposition growth of beta-Ga2O3 nanowires for DUV photodetector and image sensor application. Adv Optical Mater. 2019;7(24):1901257.
  • Guo N, Hu WD, Liao L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv Mater. 2014;26(48):8203–8209.
  • Lan CY, Li C, Wang S, et al. Highly responsive and broadband photodetectors based on WS2-graphene van der Waals epitaxial heterostructures. J Mater Chem C. 2017;5(6):1494–1500.
  • Binet F, Duboz J, Rosencher E, et al. Mechanisms of recombination in GaN photodetectors. Appl Phys Lett. 1996;69(9):1202–1204.
  • Tong XW, Kong WY, Wang YY, et al. High-performance red-light photodetector based on lead-free bismuth halide perovskite film. Acs Appl Mater Interfaces. 2017;9(22):18977–18985.
  • Xie C, Wang Y, Zhang ZX, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today. 2018;19:41–83.
  • Yang YT, Fang WH, Benderskii A, et al. Strain controls charge carrier lifetimes in monolayer WSe2: ab initio time domain analysis. J Phys Chem Lett. 2019;10(24):7732–7739.
  • Thomas A, Vikram K, Muthu DVS, et al. Structural phase transition from 1H to 1 T ‘ at low pressure in supported monolayer WS2: Raman study. Solid State Commun. 2021;336:114412.
  • Nayak AP, Bhattacharyya S, Zhu J, et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat Commun. 2014;5:3731.
  • Li ZL, Li QJ, Li H, et al. Pressure-tailored band engineering for significant enhancements in the photoelectric performance of CsI3 in the optical communication waveband. Adv Funct Mater. 2022;32(8):2108636.
  • Tonti D, Varsano F, Decker F, et al. Preparation and photoelectrochemistry of semiconducting WS2 thin films. J Phys Chem B. 1997;101(14):2485–2490.
  • Ballif C, Regula M, Levy F. Optical and electrical properties of semiconducting WS2 thin films: from macroscopic to local probe measurements. Sol Energy Mater Sol Cells. 1999;57(2):189–207.