5,760
Views
12
CrossRef citations to date
0
Altmetric
Brief Overview

Mechanical alloying: a critical review

Pages 619-647 | Received 20 Apr 2022, Published online: 30 May 2022

References

  • Suryanarayana C. editor. Non-equilibrium processing of materials, Oxford, UK:Pergamon;1999.
  • Benjamin JS. Mechanical alloying. Sci Amer. 1976;234(5):40–48.
  • Benjamin JS. Mechanical alloying – history and future potential. In: Capus JM, German RM, editor. Advances in powder metallurgy and particulate materials. Princeton, NJ: Metal Powder Industries Federation; 1992. 7, p. 155–168.
  • Duwez P, Willens RH, Klement W. Continuous series of metastable solid solutions in Ag-Cu alloys. J Appl Phys. 1960;31(6):1136–1137.
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46(1-2):1–184.
  • Suryanarayana C. Mechanical alloying and milling. New York: Marcel Dekker; 2004.
  • Hida M, Asai K, Takemoto Y, et al. Solid solubility and transformation in mechanically alloyed Ti-Mg powders. Mater Trans JIM. 1996;37(11):1679–1683.
  • Uenishi K, Kobayashi KF, Ishihara KN, et al. Formation of supersaturated solid solution in the Ag-Cu system by mechanical alloying. Mater Sci Eng. A. 1991;134:1342–1345.
  • Kataoka N, Sumiyama K, Nakamura Y. Mössbauer effect of high concentration Fe-Ag alloys produced by vapor quenching. Trans JIM. 1985;26(10):703–709.
  • Childress JR, Chien CL. Reentrant magnetic behavior in FCC Co-Cu alloys. Phys Rev. 1991;B43(10):8089–8093.
  • Klement Jr W. Solid solutions in Au-Co and Cu-Co alloys. Trans Met Soc AIME. 1963;227:965–970.
  • Gente C, Oehring M, Bormann R. Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying. Phys Rev. B. 1993;48(18):13244–13252.
  • Zhang X, Atrens A. A TEM study on the microstructure of rapidly solidified Cu-Co alloys. Acta Metall Mater. 1993;41(2):563–568.
  • Kneller EF. Magnetic and structural properties of metastable Fe-Cu solid solutions. J Appl Phys. 1964;35(7):2210–2211.
  • Huang JY, Yu YD, Wu YK, et al. Microstructure and homogeneity of nanocrystalline Co-Cu supersaturated solid solutions prepared by mechanical alloying. J Mater Res. 1997;12(4):936–946.
  • Barro MJ, Navarro E, Agudo P, et al. Structural evolution during milling of diluted solid solutions of Fe-Cu. Mater Sci Forum. 1997;235-238:553–558.
  • Ueda Y, Ikeda S, Mori Y, et al. Magnetoresistance and magnetism in Fe-Cu alloys produced by electrodeposition and mechanical alloying methods. Mater Sci Eng. A. 1996;217-218:371–375.
  • Sumiyama K, Yoshitake Y, Nakamura Y. Thermal stability of high concentration Fe-Cu microstructure and homogeneity alloys produced by vapor quenching. Acta Metall. 1985;33(10):1785–1791.
  • Huang JY, He AQ, Wu YK. Nanocrystalline Cu-Fe solid solutions prepared by mechanical alloying. Nanostr Mater. 1994;4(1):1–10.
  • Benghalem A, Morris DG. Structural evolution during intense ball milling of copper-niobium mixtures. Scripta Metall Mater. 1992;27(6):739–744.
  • Botcharova E, Heilmaier M, Freudenberger J, et al. Supersaturated solid solution of niobium in copper by mechanical alloying. J Alloys Compd. 2003;351(1-2):119–125.
  • Gialanella S. FeAl alloy disordered by ball-milling. Intermetallics. 1995;3(1):73–76.
  • Huang B, Ishihara KN, Shingu PH. Metastable phases of Al-Fe system by mechanical alloying. Mater Sci Eng. A. 1997;231(1-2):72–79.
  • Chien CL, Liou SH, Kofalt D, et al. Magnetic properties of FexCu100-x solid solutions. Phys Rev. B. 1986;33(5):3247–3250.
  • Zhou E, Suryanarayana C, Froes FH. Effect of premilling elemental powders on solid solubility extension of magnesium in titanium by mechanical alloying. Mater Lett. 1995;23(1-3):27–31.
  • Hida M, Asai K, Takemoto Y, et al. Solid solubility and transformation in mechanically alloyed Ti-Mg powders. Mater Trans. 1996;37(11):1679–1683.
  • Ward-Close CM, Lu G, Partridge PG. Microstructure of vapor-quenched Ti-Mg alloys. Mater Sci Eng. A. 1994;189(1-2):247–255.
  • Froes FH, Suryanarayana C, Russell KC, et al. Synthesis of intermetallics by mechanical alloying. Mater Sci Eng. A. 1995;192-193(2):612–623.
  • Yermakov AE, Yurchikov EE, Barinov VA. The magnetic properties of amorphous Y–Co alloy powders obtained by mechanical comminution. Phys Met Metallogr. 1981;52(6):50–58.
  • Suryanarayana C. Phase formation under non-equilibrium processing conditions: rapid solidification processing and mechanical alloying. J Mater Sci. 2018;53(19):13364–13379.
  • Suryanarayana C. Metallic glasses. Bull Mater Sci. (India). 1984;6(3):579–594.
  • Luborsky FE. editor. Amorphous metallic alloys. London:Butterworths;1983.
  • Anantharaman TR, Suryanarayana C. Rapidly solidified metals: A technological overview. Zurich: Trans Tech Publications; 1987.
  • Liebermann HH, editor. Rapidly solidified alloys: processes, structures, properties, applications. New York, NY; Marcel Dekker:1993.
  • Nishiyama N, Takenaka K, Miura H, et al. The world’s biggest glassy alloy ever made. Intermetallics. 2012;30:19–24.
  • Inoue A. Recent progress of Zr-based bulk amorphous alloys. Sci Rep Res Inst Tohoku Univ. A. 1996;42:1–11.
  • Suryanarayana C, Inoue A. Bulk metallic glasses, 2nd ed., Boca Raton, FL, USA: CRC Press; 2018.
  • Suryanarayana C, Seki I, Inoue A. A critical analysis of the glass-forming ability of alloys. J Non-Cryst Solids. 2009;355(6):355–360.
  • Massalski TB. editor. Binary alloy phase diagrams. Materials Park, OH: ASM International; 1986.
  • de Boer FR, Boom R, Mattens WCM, et al. Cohesion in metals. Transition metal alloys. Amsterdam: North-Holland; 1988.
  • Sharma S, Vaidyanathan R, Suryanarayana C. Criterion for predicting the glass-forming ability of alloys. Appl Phys Lett. 2007;90(11):111915-1–111915-3.
  • Cho YS, Koch CC. Mechanical milling of ordered intermetallic compounds: the role of defects in amorphization. J Alloys Compd. 1993;194(2):287–294.
  • Klassen T, Oehring M, Bormann R. Microscopic mechanisms of metastable phase formation during ball milling of intermetallic TiAl phases. Acta Mater. 1997;45(9):3935–3948.
  • Stoloff NS, Davies RG. The mechanical properties of ordered alloys. Prog Mater Sci. 1968;13:1–84.
  • Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10(5):473–488.
  • Wong R, Merz MD. Non-crystallinity and polymorphism in elemental solids. Nature (London). 1976;260(5546):35–36.
  • Seelam UMR, Suryanarayana C. Unpublished results, University of Central Florida, Orlando, FL, 2006.
  • Nose M, Masumoto T. Characteristics of (Fe, Co, and/or Ni)-Zr amorphous alloys. Sci Rep Res Inst Tohoku Univ. A. 1980;28(Supplement 1):222–236.
  • Köster U, Herold U. Crystallization of metallic glasses. In: Güntherodt HJ, Beck H, editor. Glassy metals I. Berlin: Springer-Verlag; 1981. p. 225–259.
  • Patil U, Hong SJ, Suryanarayana C. An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition. J Alloys Compd. 2005;389(1-2):121–126.
  • Sharma S, Suryanarayana C. Mechanical crystallization of Fe-based amorphous alloys. J Appl Phys. 2007;102(8):083544-1–083544-7.
  • Sharma S, Suryanarayana C. Effect of carbon addition on the glass-forming ability of mechanically alloyed Fe-based alloys. J Appl Phys. 2008;103(1):013504-1–013504-5.
  • Trudeau ML, Schulz R, Dussault D, et al. Structural changes during high-energy ball milling of iron-based amorphous alloys: Is high-energy ball milling equivalent to a thermal process? Phys Rev Lett. 1990;64(1):99–101.
  • Suryanarayana C. Does a disordered γ-TiAl phase exist in mechanically alloyed Ti-Al powders? Intermetallics. 1995;3(2):153–160.
  • Blatter A, von Allmen M. Reversible amorphization in laser-quenched titanium alloys. Phys Rev Lett. 1985;54(19):2103–2106.
  • Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33(4):223–315.
  • Suryanarayana C. Nanocrystalline materials. Internat Mater Rev. 1995;40(2):41–64.
  • Suryanarayana C. Recent developments in nanostructured materials. Adv Eng Mater. 2005;7(11):983–992.
  • Koch CC, editor. Nanostructured materials: processing, properties and applications. Norwich, NY: William Andrew; 2007.
  • Suryanarayana C, Ivanov E. Mechanochemical synthesis of nanocrystalline metal powders. In: Chang ITH, Zhao Y, editor. Advances in powder metallurgy. Oxford: Woodhead Publishing Ltd.; 2013. p. 42–68.
  • Nieh TG, Wadsworth J. Hall-Petch relation in nanocrystalline solids. Scripta Metall. Mater. 1991;25(4):955–958.
  • Sun NX, Lu K. Grain size limit of polycrystalline materials. Phys Rev. 1999;B59(9):5987–5989.
  • Suryanarayana C, Chen GH, Frefer A, et al. Structural evolution of mechanically alloyed Ti-Al alloys. Mater Sci & Eng. A. 1992;158(1):93–101.
  • Suryanarayana C, Korth GE, Froes FH. Compaction and characterization of mechanically alloyed nanocrystalline titanium aluminides. Metall Mater Trans. A. 1997;28(2):293–302.
  • Seelam UMR, Barkhordarian G, Suryanarayana C. Is there a hexagonal close-packed (HCP) → face-centered cubic (FCC) allotropic transformation in mechanically milled group IVB elements? J Mater Res. 2009;24(11):3454–3461.
  • Hussein MA, Suryanarayana C, Al-Aqeeli N. Fabrication of nano-grained Ti-Nb-Zr biomaterials using spark plasma sintering. Mater & Design. 2015;87:693–700.
  • Ağaoğulları D, Balcı O, Lütfi Öveçoğlu M, et al. Synthesis of bulk nanocrystalline samarium hexaboride. J Eur Ceram Soc. 2015;35(15):4121–4136.
  • Roy D, Chakraborty S, Gupta AK, et al. Synergistic effect of Nb and Zr addition in thermal stabilization of nano-crystalline Cu synthesized by ball milling. Mater Lett. 2020;271:127780.
  • Youssef KM, Abaza MA, Scattergood RO, et al. High strength, ductility and electrical conductivity of in-situ consolidated nanocrystalline Cu-1%Nb. Mater Sci Eng. 2018;A711:350–355.
  • Suryanarayana C, Al-Aqeeli N. Mechanically alloyed nanocomposites. Prog Mater Sci. 2013;58(4):383–502.
  • Prabhu B, Suryanarayana C, An L, et al. Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling. Mater Sci Eng. A. 2006;425(1-2):192–200.
  • Liu JL, Suryanarayana C, Zhang M, et al. Magnesium nanocomposites reinforced with a high volume fraction of SiC particulates. Internat J Mater Res. 2017;108(10):848–856.
  • Srinivasarao B, Suryanarayana C, Oh-ishi K, et al. Microstructure and mechanical properties of Al-Zr nanocomposite materials. Mater Sci Eng. A. 2009;518(1-2):100–107.
  • Al-Aqeeli N, Abdullahi K, Suryanarayana C, et al. Structure of mechanically milled CNT-reinforced Al-alloy nanocomposites. Mater & Manufact Process. 2013;28(9):984–990.
  • Al-Aqeeli N, Abdullahi K, Hakeem AS, et al. Synthesis, characterisation and mechanical properties of SiC reinforced Al-based nanocomposites processed by MA and SPS. Powder Metall. 2013;56(2):149–157.
  • Zhou DS, Geng HW, Zeng W, et al. High temperature stabilization of a nanostructured Cu-Y2O3 nanocomposite through microalloying with Ti. Mater Sci Eng A. 2018;712:80–87.
  • Lu TX, Chen CG, Li P, et al. Enhanced mechanical and electrical properties of in situ synthesized nano-tungsten dispersion-strengthened copper alloy. Mater Sci Eng. A. 2021;799:140161-1–140161-10.
  • Liu JL, Suryanarayana C, Ghosh D, et al. Synthesis of Mg-Al2O3 nanocomposites by mechanical alloying. J Alloys & Compounds. 2013;563:165–170.
  • Chen J, Bao CG, Wang Y, et al. Microstructure and lattice parameters of AlN particle-reinforced magnesium matrix composites fabricated by powder metallurgy. Acta Metall Sinica. 2015;28(11):1354–1363.
  • Suryanarayana C. Structure and properties of ultrafine-grained MoSi2 + Si3N4 composites synthesized by mechanical alloying. Mater Sci Eng. A. 2008;479(1-2):23–30.
  • Klassen T, Suryanarayana C, Bormann R. Low temperature superplasticity in ultrafine-grained Ti5Si3-TiAl composites. Scripta Mater. 2008;59(4):455–458.
  • Suryanarayana C, Behn R, Klassen T, et al. Mechanical characterization of mechanically alloyed ultrafine-grained Ti5Si3 + 40 vol.% (-TiAl composites. Mater Sci Eng. A. 2013;579:18–25.
  • Zhang WW, Hu Y, Wang Z, et al. A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy. Mater Sci Eng. A. 2018;734:34–41.
  • Xie MS, Suryanarayana C, Zhao YL, et al. Abnormal hot deformation behavior in a metallic-glass-reinforced Al-7075 composite. Mater Sci Eng. A. 2020;785:139212-1–139212-6.
  • Froes FH, Suryanarayana C, Eliezer D. Synthesis, properties, and applications of titanium aluminides. J Mater Sci. 1992;27(19):5113–5140.
  • Appel F, Wagner R. Microstructure and deformation of two-phase (-titanium aluminides. Mater Sci Eng. R. 1998;22(5):187–268.
  • Oehring M, Appel F, Pfullmann T, et al. Mechanical properties of submicron-grained TiAl alloys prepared by mechanical alloying. Appl Phys Lett. 1995;66(8):941–943.
  • Bohn R, Klassen T, Bormann R. Mechanical behavior of submicron-grained γ-TiAl-based alloys at elevated temperatures. Intermetallics. 2001;9(7):559–569.
  • Mishra RS, Lee WB, Mukherjee AK, et al. In: Kim Y-W, Wagner R, Yamaguchi M, editors. Gamma titanium aluminides. TMS, Warrendale, PA, 1995;p 571.
  • Chawla KK, Esmaeili AH, Datye A, et al. Effect of homogeneous/heterogeneous precipitation on aging behavior of SiCP-Al 2014 composite. Scripta Metall Mater. 1991;25(6):1315–1319.
  • Suresh S, Christman T, Sugimura Y. Accelerated aging in cast Al alloy-SiC particulate composites. Scripta Metall. 1989;23(9):1599–1602.
  • Suresh S, Chawla KK. In: Suresh S, Mortensen A, Needleman A, editors. Fundamentals of metal matrix composites, chapter 7. Stoneham, MA; Butterworths-Heinemann:1993, p.119–136.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng. A. 2004;375-377:213–218.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Murty BS, Yeh JW, Ranganathan S, et al. High entropy alloys. Amsterdam: Elsevier; 2019.
  • Cantor B. Multicomponent high entropy alloys. Entropy . 2014;16(9):4749–4768.
  • Tsai MH, Yeh JW. High entropy alloys: a critical review. Mater Res Lett. 2014;2(3):107–123.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • Pickering EJ, Jones NG. High-entropy alloys: a critical assessment of their founding principles and future prospects. Internat Mater Rev. 2016;61(3):183–202.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Li ZH, Zhao ST, Ritchie RO, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci. 2019;102:296–345.
  • Cantor B. Multicomponent high-entropy Cantor alloys. Prog Mater Sci. 2021;120:100754-1–100754-36.
  • Gao MC, Yeh JW, Liaw PK, et al., editors. 2016. High Entropy Alloys: Fundamentals and Applications. Basel: Springer; 2016.
  • Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Natural Sci: Mater Internat. 2011;21(6):433–446.
  • Varalakshmi C, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloys Compd. 2008;460(1-2):253–257.
  • Koch CC. Nanocrystalline high-entropy alloys. J Mater Res. 2017;32(18):3435–3444.
  • Torralba JM, Alvaredo P, Garcia-Junceda A. High-entropy alloys fabricated via powder metallurgy. A critical review. Mater Sci Tech. 2019;62(2):84–114.
  • Vaidya M, Muralikrishna GM, Murty BS. High-entropy alloys by mechanical alloying: a review. J Mater Res. 2019;34(5):664–686.
  • Salemi F, Abbasi MH, Karimzadeh F. Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying. J Alloys Compd. 2016;685:278–286.
  • Tan XR, Zhang ZP, Zhi Q, et al. Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high entropy alloy. Mater Des. 2016;109:27–36.
  • Mane RB, Panigrahi BB. Effect of alloying order on non-isothermal sintering kinetics of mechanically alloyed high entropy alloy powders. Mater Lett. 2018;217:131–134.
  • Fu Z, Chen W, Chen Z, et al. Influence of Ti addition and sintering method on microstructure and mechanical behavior of medium-entropy Al0.6CoNiFe alloy. Mater Sci Eng. A. 2014;619:137–145.
  • Hume-Rothery W, Smallman RE, Haworth CW. The structure of metals and alloys. 5th ed. London: The Institute of Metals; 1969.
  • Jiang L, Lu YP, Jiang H, et al. Formation rules of single phase solution in high entropy alloys. Mater Sci Tech. 2016;32(6):588–592.
  • Darken LS, Gurry RW. Physical chemistry of metals. New York (NY): McGraw-Hill; 1962.
  • Suryanarayana C. University of Central Florida, unpublished results, 2016.
  • Ma L, Wang L, Zhang T, et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M = Fe, Co, Ni) alloys. Mater Trans. 2002;43(2):277–280.
  • Wang WH. High-entropy metallic glasses. JOM. 2014;66(10):2067–2077.
  • Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys. J Mag Mater. 2014;355:58–64.
  • Vaidya M, Armugam S, Kashyap S, et al. Amorphization in equiatomic high entropy alloys. J Non-Cryst Solids. 2015;413:8–14.
  • Chen YL, Tsai CW, Juan CC, et al. Amorphization of equimolar alloys with HCP elements during mechanical alloying. J Alloys Compd. 2010;506(1):210–215.
  • Xu J, Shang C, Ge W, et al. Effects of elemental addition on the microstructure, thermal stability, and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys. Adv Powder Technol. 2016;27(4):1418–1426.
  • Youssef KM, Zaddach AJ, Niu C, et al. A novel low-density, high hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett. 2015;3(2):95–99.
  • Ma E. Alloys created between immiscible elements. Prog Mater Sci. 2005;50(4):413–509.
  • He JH, Sheng HW, Schilling PJ, et al. Amorphous structures in the immiscible Ag-Ni system. Phys Rev Lett. 2001;86(13):2826–2829.
  • Nastasi M, Saris FW, Hung LS, et al. Stability of amorphous Cu/Ta and Cu/W alloys. J Appl Phys. 1985;58(8):3052–3058.
  • Linde RK. Lattice parameters of metastable silver-copper alloys. J Appl Phys. 1966;37(2):934.
  • van Ingen RP, Fastenau RHJ, Mittemeijer EJ. Formation of crystalline AgxNi1-x solid solutions of unusually high supersaturation by laser ablation deposition. Phys Rev Lett. 1994;72(19):3116–3119.
  • Xu J, Herr U, Klassen T, et al. Formation of supersaturated solid solutions in the immiscible Ni-Ag system by mechanical alloying. J Appl Phys. 1996;79(8):3935–3945.
  • Suryanarayana C, Liu JL. Processing and characterization of mechanically alloyed immiscible metals. Internat J Mater Res. 2012;103(9):1125–1129.
  • Chen YG, Liu BX. Observation of ion-induced alloy phase formation in an immiscible Y-Ta system. J Non-Cryst Solids. 1997;217(2-3):308–316.
  • Crespo-Sosa A, Schaaf P, Boise W, et al. Irradiation effects in Ag-Fe bilayers: ion-beam mixing, recrystallization, and surface roughening. Phys Rev. B. 1996;53(22):14795–14805.
  • Niessen AK, de Boer FR, Boom R, et al. Model predictions for the enthalpy of formation of transition metal alloys II. Calphad. 1983;7(1):51–70.
  • Klassen T, Herr U, Averback RS. Ball milling of systems with positive heat of mixing: effect of temperature in Ag-Cu. Acta Mater. 1997;45(7):2921–2930.
  • Ivanov E, Sumiyama K, Yamauchi H, et al. Nonequilibrium f.c.c. phase in immiscible Yb-Ce alloy produced by mechanical alloying. J Alloys Compd. 1993;192(1-2):251–252.
  • Sumiyama K, Yanai K, Ivanov E, et al. Nonequilibrium phase formation and valence fluctuation in immiscible Ce-Yb alloys produced by mechanical milling and sputtering. Mater Sci Eng A. 1994;181-182:1268–1271.
  • Shen TD, Koch CC. Formation, solid solution hardening and softening of nanocrystalline solid solutions prepared by mechanical attrition. Acta Mater. 1996;44(2):753–761.
  • Eckert J, Holzer JC, Johnson WL. Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys. J Appl Phys. 1993;73(1):131–141.
  • Eckert J, Holzer JC, Krill III CE, et al. Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders. J Appl Phys. 1993;73(6):2794–2802.
  • Ma E, Atzmon M, Pinkerton FE. Thermodynamic and magnetic properties of metastable FexCu100-x solid solutions prepared by mechanical alloying. J Appl Phys. 1993;74(2):955–962.
  • Miyazaki T, Terada D, Miyajima Y, et al. Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion. J Mater Sci. 2011;46(12):4296–4301.
  • Herr U, Samwer K. Formation of nanocrystalline and amorphous phases by mechanical alloying in the system W-Fe. Nanostr Mater. 1992;1(6):515–521.
  • Schilling PJ, He JH, Tittsworth RC, et al. Two-phase coexistence region in mechanically alloyed Cu-Fe: an X-ray absorption near-edge structure study. Acta Mater. 1999;47(8):2525–2537.
  • Schilling PJ, Palshin V, Tittsworth RC, et al. Overlapping solid solubility in mechanically alloyed Fe-Ni and Fe-Cu. Phys Rev. B. 2004;68(22):224204.
  • Hofer F, Warbichler P. Spinodal decomposition in the gold-nickel system. Z Metallkde. 1985;76(1):11–15.
  • Suryanarayana C, Froes FH. Nanocrystalline titanium-magnesium alloys through mechanical alloying. J Mater Res. 1990;5(9):1880–1886.
  • Callister Jr WD, Rethwisch DG. Materials science and engineering, an introduction, 10th ed., Hoboken, NJ: Wiley; 2018.
  • Suryanarayana C, Joubori AA, Wang Z. Nanostructured materials and nanocomposites by mechanical alloying: An overview. Met Mater Internat. 2022;28(1):41–53.
  • Suryanarayana C. Nanocrystalline materials. Internat Mater Rev. 1995;40(2):41–64.
  • Lu L, Sui ML, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature. Science. 2000;287(5457):1463–1466.
  • Wang Y, Chen MW, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419(6910):912–915.
  • Lu L, Shen YF, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304(5569):422–426.
  • Wu XL, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Nat Acad Sci. 2015;112(47):14501–14505.
  • Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7(10):393–398.
  • Estrin Y, Beygelzimer Y, Kulagin R, et al. Architecturing materials at mesoscale: some current trends. Mater Res Lett. 2021;9(10):399–421.
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interactions. Mater Res Lett. 2021;9(1):1–31.
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532.
  • Zhu YT. Introduction to heterostructured materials: a fast emerging field. Metall Mater Trans A. 2021;52(11):4715–4726.
  • Li ZK, Fang XT, Wang YF, et al. Tuning heterostructures with powder metallurgy for high synergistic strengthening and hetero-deformation induced hardening. Mater Sci Eng A. 2020;777:139074-1–139074-5.
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331(6024):1587–1590.
  • Ohsaki S, Kato S, Tsuji N, et al. Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Mater. 2007;55(8):2885–2895.
  • Smith CH. Applications of rapidly solidified soft magnetic alloys. In: Liebermann HH, editor. Rapidly solidified alloys: processes, structures, properties, applications. New York, NY: Marcel Dekker; 1993. p. 617–663.
  • Hasegawa R. Applications of amorphous magnetic alloys. Mater Sci Eng A. 2004;375-377:90–97.
  • Suryanarayana C. Mechanical alloying: a novel technique to synthesize advanced materials. Research. 2019;3:4219812-1–4218812-17.