2,680
Views
6
CrossRef citations to date
0
Altmetric
Original Reports

Boosting the performance of nickel–cobalt LDH cathode with phosphorus and selenium co-doping for hybrid supercapacitor

, , , , &
Pages 593-601 | Received 06 Jan 2022, Published online: 23 May 2022

References

  • Yan J, Li SH, Lan BB, et al. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv Funct Mater. 2020 Jan;30(2):1902564.
  • Wu NN, Bai X, Pan D, et al. Recent advances of asymmetric supercapacitors. Adv Mater Interfaces. 2021 Jan;8(1):2001710.
  • Huang J, Yuan K, Chen YW. Wide voltage aqueous asymmetric supercapacitors: advances, strategies, and challenges. Adv Funct Mater. 2022 Jan;32(4):2108107.
  • Peng M, Wang L, Li L, et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. eScience. 2021 Nov 1;1(1):83–90.
  • Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018 Sep 26;118(18):9233–9280.
  • Liang K, Matsumoto RA, Zhao W, et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv Funct Mater. 2021 Aug;31(33):2104007.
  • Zhang KY, Wei YH, Huang J, et al. A generalized one-step in situ formation of metal sulfide/reduced graphene oxide nanosheets toward high-performance supercapacitors. Sci China Mater. 2020 Oct;63(10):1898–1909.
  • Garakani MA, Abouali S, Xu ZL, et al. Heterogeneous, mesoporous NiCo2O4-MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. J Mater Chem A. 2017 Feb;5(7):3547–3557.
  • Chodankar NR, Pham HD, Nanjundan AK, et al. True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small. 2020 Sep;16(37):2002806.
  • Cao RG, Xu W, Lv DP, et al. Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater. 2015 Aug;5(16):1402273.
  • Li JB, Ding ZB, Li JL, et al. Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem Eng J. 2021 Mar;407:127199.
  • Abouali S, Akbari Garakani M, Xu Z-L, et al. NiCO2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors. Carbon. 2016 Jun 1;102:262–272.
  • Zhang D, Guo X, Tong X, et al. High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide. J Alloys Compd. 2020 Oct 5;837:155529.
  • Zhang KY, Xu YZ, Lin YC, et al. Enriching redox active sites by interconnected nanowalls-like nickel cobalt phospho-sulfide nanosheets for high performance supercapacitors. Chin Chem Lett. 2021 Nov;32(11):3553–3557.
  • Huang J, Xiong YS, Peng ZY, et al. A general electrodeposition strategy for fabricating ultrathin nickel cobalt phosphate nanosheets with ultrahigh capacity and rate performance. ACS Nano. 2020 Oct;14(10):14201–14211.
  • Zhang X, Lu W, Tian YH, et al. Nanosheet-assembled NiCo-LDH hollow spheres as high-performance electrodes for supercapacitors. J Colloid Interface Sci. 2022 Jan;606:1120–1127.
  • Zang Y, Luo H, Zhang H, et al. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors. ACS Appl Energy Mater. 2021 Feb;4(2):1189–1198.
  • Wei DD, Zhang YL, Zhu XZ, et al. CNT/Co3S4@NiCo LDH ternary nanocomposites as battery-type electrode materials for hybrid supercapacitors. J Alloys Compd. 2020 May;824:153937.
  • Jiang D, Wei CAY, Zhu ZY, et al. Synthesis of 3D flower-like hierarchical NiCo-LDH microspheres with boosted electrochemical performance for hybrid supercapacitors. Inorg Chem Front. 2021 Oct;8(19):4324–4333.
  • Rao YF, Yuan M, Luo F, et al. One-step laser fabrication of phosphorus-doped porous graphene electrodes for high-performance flexible microsupercapacitor. Carbon. 2021 Aug;180:56–66.
  • Manikandan R, Raj CJ, Nagaraju G, et al. Selenium enriched hybrid metal chalcogenides with enhanced redox kinetics for high-energy density supercapacitors. Chem Eng J. 2021 Jun;414:128924.
  • Liu S, Yin Y, Ni DX, et al. Phosphorous-containing oxygen-deficient cobalt molybdate as an advanced electrode material for supercapacitors. Energy Storage Mater. 2019 May;19:186–196.
  • Wang T, Chen HC, Yu F, et al. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019 Jan;16:545–573.
  • Du YM, Zhao HM, Wang WS, et al. (Ni,Co)Se@Ni(OH)(2) heterojunction nanosheets as an efficient electrocatalyst for the hydrogen evolution reaction. Dalton Trans. 2021 Jan;50(1):391–397.
  • Chen Y, Lian P, Feng J, et al. Tailoring defective vanadium pentoxide/reduced graphene oxide electrodes for all-vanadium-oxide asymmetric supercapacitors. Chem Eng J. 2022 Feb 1;429:132274.
  • Qin ZX, Chen YB, Huang ZX, et al. A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride. J Mater Chem A. 2017 Sep;5(36):19025–19035.
  • Du W, Zong Q, Zhan J, et al. Tailoring Mo-doped NiCoP grown on (Ni,Co)Se2 nanoarrays for asymmetric supercapacitor with enhanced electrochemical performance. ACS Appl Energy Mater. 2021 Jul 26;4(7):6667–6677.
  • Ye B, Zhou J, Cao X, et al. Scalable CNTs/NiCoSe2 hybrid films for flexible all-solid-state asymmetric supercapacitors. ACS Appl Mater Interfaces. 2021 Nov 17;13(45):53868–53876.
  • Zhu YL, Zong Q, Zhang QL, et al. Three-dimensional core-shell NiCoP@NiCoP array on carbon cloth for high performance flexible asymmetric supercapacitor. Electrochim Acta. 2019 Mar;299:441–450.
  • Wang T, Zhang SL, Yan XB, et al. 2-Methylimidazole-derived Ni-Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl Mater Interfaces. 2017 May;9(18):15510–15524.
  • Jia H, Li Q, Li C, et al. A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor. Chem Eng J. 2018 Dec;354:254–260.
  • Zhang H, Wang TT, Sumboja A, et al. Integrated hierarchical carbon flake arrays with hollow P-doped CoSe2 nanoclusters as an advanced bifunctional catalyst for Zn-air batteries. Adv Funct Mater. 2018 Oct;28(40):1804846.
  • Chen XB, Ding JG, Li Y, et al. Size-controllable synthesis of NiCoSe2 microspheres as a counter electrode for dye-sensitized solar cells. RSC Adv. 2018;8(46):26047–26055.
  • Yang XJ, Sun HM, Zan P, et al. Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. J Mater Chem A. 2016;4(48):18857–18867.
  • Wang HZ, Liu J, Zhang WG, et al. Preparation of binder-free three-dimensional N-doped carbon framework/nickel cobaltate composite for all-solid supercapacitor application. Appl Surf Sci. 2021 Sep;561:149893.
  • Karuppaiah M, Benadict Joseph X, Wang S-F, et al. Engineering architecture of 3D-urchin-like structure and 2D-nanosheets of Bi2S3@g-C3N4 as the electrode material for a solid-state symmetric supercapacitor. Energy Fuels. 2021 Aug 5;35(15):12569–12580.
  • Kim HS, Cook JB, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater. 2017 Apr;16(4):454.
  • Wang XH, Fang Y, Shi B, et al. Three-dimensional NiCo2O4@NiCo2O4 core-shell nanocones arrays for high-performance supercapacitors. Chem Eng J. 2018 Jul;344:311–319.
  • Wang KB, Wang SE, Liu JD, et al. Fe-based coordination polymers as battery-type electrodes in semi-solid-state battery-supercapacitor hybrid devices. ACS Appl Mater Interfaces. 2021 Apr;13(13):15315–15323.
  • Zhang MC, Fan HQ, Ren XH, et al. Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays. J Power Sources. 2019 Apr;418:202–210.
  • Shrestha KR, Kandula S, Rajeshkhanna G, et al. An advanced sandwich-type architecture of MnCo2O4@N-C@MnO2 as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor. J Mater Chem A. 2018 Dec;6(47):24509–24522.
  • Zhang X, Lu Q, Guo E, et al. Nico layer double hydroxide/biomass-derived interconnected porous carbon for hybrid supercapacitors. J Energy Storage. 2021 Jun 1;38:102514.
  • Zhang L, Cai P, Wei Z, et al. Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. J Colloid Interface Sci. 2021 Apr 15;588:637–645.
  • He YZ, Zhang XL, Wang JM, et al. Constructing Co(OH)F nanorods@NiCo-LDH Nanocages Derived from ZIF-67 for high-performance supercapacitors. Adv Mater Interfaces. 2021 Sep;8(17):2100642.
  • Wang GR, Jin ZL, Zhang WX. A phosphatized NiCo LDH 1D dendritic electrode for high energy asymmetric supercapacitors. Dalton Trans. 2019 Oct;48(39):14853–14863.
  • Li ZY, Huang Y, Zhang Z, et al. Hollow C-LDH/Co9S8 nanocages derived from ZIF-67-C for high-performance asymmetric supercapacitors. J Colloid Interface Sci. 2021 Dec;604:340–349.
  • Luo L, Zhou YL, Yan W, et al. Design and construction of hierarchical sea urchin-like NiCo-LDH@ACF composites for high-performance supercapacitors. Ind Crops Prod. 2021 Nov;171:113900.
  • Liu X, Ye L, Du YQ, et al. Metal organic framework derived core-shell hollow CoSx@NiCo-LDH as advanced electrode for high-performance supercapacitor. Mater Lett. 2020 Jan;258:126812.
  • Gao XY, Zhao YF, Dai KQ, et al. Nicop nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem Eng J. 2020 Mar;384:123373.