3,097
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Unveiling microstructural origins of the balanced strength–ductility combination in eutectic high-entropy alloys at cryogenic temperatures

, , , , , , , , ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 602-610 | Received 15 Dec 2021, Published online: 25 May 2022

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.
  • He MY, Shen YF, Jia N, et al. C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy. Appl Mater Today. 2021;25:101162.
  • Gasan H, Lökçü E, Ozcan A, et al. Effects of Al on the phase volume fractions and wear properties in the AlxCoCrFeMoNi high entropy alloy system. Met Mater Int. 2020;26:310–320.
  • Wang CT, He Y, Guo ZP, et al. Strain rate effects on the mechanical properties of an AlCoCrFeNi high-entropy alloy. Met Mater Int. 2021;27:2310–2318.
  • Ding ZY, He QF, Chung D, et al. Evading brittle fracture in submicron-sized high entropy intermetallics in dual-phase eutectic microstructure. Scr Mater. 2020;187:280–284.
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515–534.
  • Lu YP, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200.
  • Lu YP, Gao XZ, Li J, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143–150.
  • Gao XZ, Lu YP, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 2017;147:59–66.
  • Zhang W, Liu L, Peng SY, et al. The tensile property and notch sensitivity of AlCoCrFeNi2.1 high entropy alloy with a novel “steel-frame” eutectic microstructure. J Alloy Compd. 2021;863:158747.
  • Xiong T, Yang WF, Zheng SJ, et al. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1. J Mater Sci Technol. 2021;65:216–227.
  • Jiang H, Qiao DX, Lu YP, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability. Scr Mater. 2019;165:145–149.
  • Shukla S, Wang TH, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scr Mater. 2018;156:105–109.
  • Shi PJ, Li Y, Wen YB, et al. A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening. J Mater Sci Technol. 2021;89:88–96.
  • Bhattacharjee T, Zheng RX, Chong Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Mater Chem Phys. 2018;210:207–212.
  • Jin X, Zhou Y, Zhang L, et al. A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties. Mater Lett. 2018;216:144–146.
  • Wani IS, Bhattacharjee T, Sheikh S, et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater Res Lett. 2016;4:174–179.
  • Shi PJ, Ren WL, Zheng TX, et al. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun. 2019;10:489.
  • Wang QN, Lu YP, Yu Q, et al. The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy AlCoCrFeNi. Sci Rep. 2018;8:1–7.
  • Jin X, Bi J, Zhang L, et al. A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J Alloy Compd. 2019;770:655–661.
  • Xiong T, Zheng SJ, Pang JY, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure. Scr Mater. 2020;186:336–340.
  • Dong Y, Yao ZQ, Huang X, et al. Microstructure and mechanical properties of AlCoxCrFeNi3-x eutectic high-entropy-alloy system. J Alloy Compd. 2020;823:153886.
  • Wang L, Shen J, Shang Z, et al. Microstructure evolution and enhancement of fracture toughness of NiAl–Cr(Mo)–(Hf,Dy) alloy with a small addition of Fe during heat treatment. Scr Mater. 2014;89:1–4.
  • Shi PJ, Li RG, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science. 2021;373:912–918.
  • Bhattacharjee T, Wani IS, Sheikh S, et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci Rep. 2018;8:1–8.
  • Saideep M, Vahid H, Riyadh S, et al. Small-scale mechanical behavior of a eutectic high entropy alloy. Sci Rep. 2020;10:2669.
  • Zhang P, Li SX, Zhang ZF. General relationship between strength and hardness. Mater Sci Eng A. 2011;529:62–73.
  • Meyers M, Chawla KK. Mechanical behavior of materials. New York: Cambridge University Press; 2009.
  • Shi PJ, Zhong YB, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater Today. 2020;41:62–71.
  • He ZF, Jia N, Yan HL, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. Int J Plasticity. 2021;139:102965.
  • Jia YF, Jia YD, Wu SW, et al. Novel ultralight-weight complex concentrated alloys with high strength. Materials (Basel). 2019;12:1136.
  • Zhu YT, Ameyama K, Anderon PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31.
  • Li ZZ, Zhao ST, Ritchie RO, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci. 2019;102:296–345.
  • Takasugi T, Hanada S, Izumi O. Slip modes in B2-type intermetallic alloys. Mater Tran JIM. 1990;31(6):435–442.
  • Liu CT, George EP, Maziasz PJ, et al. Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design. Mater Sci Eng A. 1998;258(1-2):84–98.
  • Zhu YC, Zhou SC, Xiong ZP, et al. Enabling stronger eutectic high-entropy alloys with larger ductility by 3D printed directional lamellae. Addit Manuf. 2021;39:101901.
  • Nakashima K, Horita Z, Nemoto M, et al. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater. 1998;46(5):1589–1599.
  • Iwahashi Y, Horita Z, Nemoto M, et al. The process of grain refinement in equal-channel angular pressing. Acta Mater. 1998;46(9):3317–3331.
  • Ding QQ, Fu XQ, Chen DK, et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater Today. 2019;25:21–27.
  • Ding QQ, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature. 2019;574:223–227.
  • Zhang ZJ, Sheng HW, Wang ZJ, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun. 2017;8:1–8.
  • Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun. 2016;7:1–8.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158.
  • Zhang ZJ, Mao MM, Wang JW, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6:1–6.
  • Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 2017;28:292–303.
  • Yang MX, Pan Y, Yuan FP, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151.
  • Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398.
  • Chen XF, Wang Q, Cheng ZY, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature. 2021;592:712–716.
  • Seol JB, Bae JW, Kim JG, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Mater. 2020;194:366–377.