1,530
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Thermal conductivity reduction in (Zr0.25Ta0.25Nb0.25Ti0.25)C high entropy carbide from extrinsic lattice defects

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 611-617 | Received 20 Apr 2022, Published online: 25 May 2022

References

  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020;5:295–309.
  • Feng L, Fahrenholtz WG, Brenner DW. High-entropy ultra-high-temperature borides and carbides: a new class of materials for extreme environments. Annu Rev Mater Res. 2021;51(1):165–185.
  • Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Commun. 2018;9:4980.
  • Ye B, Wen T, Nguyen MC, et al. First-principles study, fabrication and characterization of (Zr 0.25Nb 0.25Ti 0.25V 0.25)C high-entropy ceramics. Acta Mater. 2019;170:15–23.
  • Harrington TJ, Gild J, Sarker P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 2019;166:271–280.
  • Yan X, Constantin L, Lu Y, et al. (Hf 0.2Zr 0.2Ta 0.2Nb 0.2Ti 0.2)C high-entropy ceramics with low thermal conductivity. J Am Ceram Soc. 2018;101(10):4486–4491.
  • Rost CM, Borman T, Hossain MD, et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Mater. 2020;196:231–239.
  • Zhou J, Zhang J, Zhang F, et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceram Int. 2018;44(17):22014–22018.
  • Ye B, Wen T, Liu D, et al. Oxidation behavior of (Hf 0.2Zr 0.2Ta 0.2Nb 0.2Ti 0.2)C high-entropy ceramics at 1073-1473 K in air. Corros Sci. 2019;153:327–332.
  • Ye B, Wen T, Chu Y. High-temperature oxidation behavior of (Hf 0.2Zr 0.2Ta 0.2Nb 0.2Ti 0.2)C high-entropy ceramics in air. J Am Ceram Soc. 2020;103(1):500–507.
  • Wang F, Yan X, Wang T, et al. Irradiation damage in (Zr 0.25Ta 0.25Nb 0.25Ti 0.25)C high-entropy carbide ceramics. Acta Mater. 2020;195:739–749.
  • Wen T, Ye B, Nguyen MC, et al. Thermophysical and mechanical properties of novel high-entropy metal nitride-carbides. J Am Ceram Soc. 2020;103(11):6475–6489.
  • Dai FZ, Wen B, Sun Y, et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr 0.2Hf 0.2Ti 0.2Nb 0.2Ta 0.2)C by deep learning potential. J Mater Sci Tech. 2020;43:168–174.
  • Gurunathan R, Hanus R, Dylla M, et al. Analytical models of phonon–point-defect scattering. Phys Rev Appl. 2020;13:034011.
  • Khafizov M, Pakarinen J, He L, et al. Impact of irradiation induced dislocation loops on thermal conductivity in ceramics. J Am Ceram Soc. 2019;102(12):7533–7542.
  • Alfred LCR. Theory of the resistivity change in a metal due to multiple point imperfections. Phys Rev. 1966;152:693–698.
  • Klemens PG. Thermal conductivity and lattice vibrational modes. London, UK: Academic Press; 1958. (Solid State Physics; 7). p. 1–98.
  • Turk LA, Klemens PG. Phonon scattering by impurity platelet precipitates in diamond. Phys Rev B. 1974;9:4422–4428.
  • Morelli DT, Perry TA, Farmer JW. Phonon scattering in lightly neutron-irradiated diamond. Phys Rev B. 1993;47:131–139.
  • Ziegler JF, Ziegler MD, Biersack JP. SRIM: the stopping and range of ions in matter (2010). Nucl Instrum Meth Phys Res B. 2010;268(11–12):1818–1823.
  • Weber WJ, Zhang Y. Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: challenges and recommendations. Curr Opin Solid State Mater Sci. 2019;23(4):100757.
  • Hurley DH, Schley RS, Khafizov M, et al. Local measurement of thermal conductivity and diffusivity. Rev Sci Instrum. 2015;86(12):123901.
  • Khafizov M, Chauhan V, Wang Y, et al. Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications. J Mater Res. 2017;32(1):204–216.
  • Maillet D, André S, Batsale JC, et al. Thermal quadrupoles: solving the heat equation through integral transforms. Chichester, UK: John Wiley & Sons, LTD; 2000.
  • Hua Z, Fleming A, Ban H. The study of using a multi-layered model to extract thermal property profiles of ion-irradiated materials. Int J Heat Mass Transf. 2019;131:206–216.
  • Riyad MF, Chauhan V, Khafizov M. Implementation of a multilayer model for measurement of thermal conductivity in ion beam irradiated samples using a modulated thermoreflectance approach. J Nucl Mater. 2018;509:134–144.
  • Dennett CA, Hua Z, Khanolkar A, et al. The influence of lattice defects, recombination, and clustering on thermal transport in single crystal thorium dioxide. APL Mater. 2020;8:111103.
  • Chen G, Hui P. Thermal conductivities of evaporated gold films on silicon and glass. Appl Phys Lett. 1999;74(20):2942–2944.
  • Makinson REB. The thermal conductivity of metals. Math Proc Cambridge Philos Soc. 1938;34(3):474–497.
  • Zheng Q, Mei AB, Tuteja M, et al. Phonon and electron contributions to the thermal conductivity of VN x epitaxial layers. Phys Rev Mater. 2017;1:065002.
  • Hossain MD, Borman T, Kumar A, et al. Carbon stoichiometry and mechanical properties of high entropy carbides. Acta Mater. 2021;215:117051.
  • Wolf W, Podloucky R, Antretter T, et al. First-principles study of elastic and thermal properties of refractory carbides and nitrides. Phil Mag B. 1999;79(6):839–858.
  • Williams WS. Electrical properties of hard materials. Int J Refract Hard Met. 1999;17(1):21–26.
  • Khafizov M, Yablinsky C, Allen TR, et al. Measurement of thermal conductivity in proton irradiated silicon. Nucl Instrum Meth Phys Res B. 2014;325:11–14.
  • Ferry SE, Dennett CA, Woller KB, et al. Inferring radiation-induced microstructural evolution in single-crystal niobium through changes inthermal transport. J Nucl Mater. 2019;523:378–382.
  • Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. J Mater Chem. 2011;21:15843–15852.
  • Klemens PG. The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc A. 1955;68(12):1113–1128.