5,674
Views
10
CrossRef citations to date
0
Altmetric
Brief Overview

Review and prospects for room-temperature sodium-sulfur batteries

, &
Pages 691-719 | Received 16 May 2022, Published online: 29 Jun 2022

References

  • Wang D-W, Zeng Q, Zhou G, et al. Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A. 2013;1:9382–9394.
  • Liang J, Sun Z-H, Li F, et al. Carbon materials for Li-S batteries: functional evolution and performance improvement. Energy Stor Mater. 2016;2:76–106.
  • Liang J, Li F, Cheng H-M. On energy: batteries beyond lithium ion. Energy Stor Mater. 2017;7:A1–A3.
  • Nikiforidis G, Jongerden GJ, Jongerden EF, et al. An electrochemical study on the cathode of the intermediate temperature tubular sodium-sulfur (NaS) battery. J Electrochem Soc. 2019;166:A135–A142.
  • Li T, Xu J, Wang C, et al. The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium-sulfur battery. J Alloys Compd. 2019;792:797–817.
  • Kairies K-P, Figgener J, Haberschusz D, et al. Market and technology development of PV home storage systems in Germany. J Energy Storage. 2019;23:416–424.
  • Liu M, Bai W, Guo H, et al. A permselective and multifunctional 3D N-doped carbon nanotubes interlayer for high-performance lithium-sulfur batteries. Electrochim Acta. 2022;421:140430.
  • Liu T, Zhang Y, Chen C, et al. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat Commun. 2019;10:1965.
  • Gross MM, Manthiram A. Development of low-cost sodium-aqueous polysulfide hybrid batteries. Energy Stor Mater. 2019;19:346–351.
  • Wang Y, Zhou D, Palomares V, et al. Revitalising sodium-sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ Sci. 2020;13:3848–3879.
  • Liu H, Lai WH, Lei Y, et al. Electrolytes/interphases: enabling distinguishable sulfur redox processes in room-temperature sodium-sulfur batteries. Adv Energy Mater. 2022;12:2103304.
  • Gope S, Singh DK, Eswaramoorthy M, et al. An extremely high surface area mesoporous-microporous-networked pillared carbon for high stability li-s and intermediate temperature Na-S batteries. Chem Select. 2017;2:9249–9255.
  • Delmas C. Sodium and sodium-Ion batteries: 50 years of research. Adv Energy Mater. 2018;8:1703137.
  • Ye H, Li Y. Room-temperature metal-sulfur batteries: What can we learn from lithium-sulfur? Info Mat. 2022;4:e12291.
  • Ye C, Jin H, Shan J, et al. A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries. Nat Commun. 2021;12:7195.
  • Zhang BW, Sheng T, Wang YX, et al. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur interactions. Angew Chem Int Ed Engl. 2019;58:1484–1488.
  • Yan Z, Liang Y, Hua W, et al. Multiregion janus-featured cobalt phosphide-cobalt composite for highly reversible room-temperature sodium-sulfur batteries. ACS Nano. 2020;14:10284–10293.
  • Jeon JW, Kim D-M, Lee J, et al. PIM-1-based carbon-sulfur composites for sodium-sulfur batteries that operate without the shuttle effect. J Mater Chem A. 2020;8:3580–3585.
  • Zhang S, Pollard TP, Feng X, et al. Altering the electrochemical pathway of sulfur chemistry with oxygen for high energy density and low shuttling in a Na/S battery. ACS Energy Lett. 2020;5:1070–1076.
  • Wang N, Wang Y, Bai Z, et al. High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ Sci. 2020;13:562–570.
  • Liang Z, Zheng G, Liu C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015;15:2910–2916.
  • Sun B, Li P, Zhang J, et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv Mater. 2018;30:1801334.
  • Hong X, Mei J, Wen L, et al. Nonlithium metal-sulfur batteries: steps toward a leap. Adv Mater. 2019;31:1802822.
  • Zhang Y, Liu N. Nanostructured electrode materials for high-energy rechargeable Li, Na and Zn batteries. Chem Mater. 2017;29:9589–9604.
  • Zhao Y, Adair KR, Sun X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci. 2018;11:2673–2695.
  • Li L, Peng S, Lee JKY, et al. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy. 2017;39:111–139.
  • Wang Y-X, Zhang B, Lai W, et al. Room-temperature sodium-sulfur batteries: A comprehensive review on research progress and cell chemistry. Adv Energy Mater. 2017;7:1602829.
  • Sun B, Xiong P, Maitra U, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv Mater. 2020;32:1903891.
  • Ye C, Jiao Y, Chao D, et al. Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries. Adv Mater. 2020;32:1907557.
  • Luo J, Lu X, Matios E, et al. Tunable MXene-derived 1d/2d hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett. 2020;20:7700–7708.
  • Wang Y, Shi H, Niu J, et al. Self-healing Sn4P3@hard carbon co-storage anode for sodium-ion batteries. J Alloys Compd. 2021;851:156746.
  • Kumar D, Kuhar SB, Kanchan DK. Room temperature sodium-sulfur batteries as emerging energy source. J Energy Storage. 2018;18:133–148.
  • Park K, Cho JH, Jang J-H, et al. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix. Energy Environ Sci. 2015;8:2389–2395.
  • Zhou J, Xu S, Yang Y. Strategies for polysulfide immobilization in sulfur cathodes for room-temperature sodium-sulfur batteries. Small. 2021;17:e2100057.
  • Yu X, Manthiram A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. Chem Electro Chem. 2014;1:1275–1280.
  • Zhang H, Diemant T, Qin B, et al. Solvent-dictated sodium sulfur redox reactions: investigation of carbonate and ether electrolytes. Energies. 2020;13:836.
  • Yan Z, Tian Q, Liang Y, et al. Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries. Cell Reports Phys Sci. 2021;2:100539.
  • Zhang J, Wang D-W, Lv W, et al. Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv Energy Mater. 2018;8:1801361.
  • Wan B, Xu S, Yuan X, et al. Diversities of stoichiometry and electrical conductivity in sodium sulfides. J Mater Chem A. 2019;7:16472–16478.
  • Zhang D, Li B, Wang S, et al. Simultaneous formation of artificial sei film and 3d host for stable metallic sodium anodes. ACS Appl Mater Interfaces. 2017;9:40265–40272.
  • Zheng M, Chi Y, Hu Q, et al. Carbon nanotube-based materials for lithium-sulfur batteries. J Mater Chem A. 2019;7:17204–17241.
  • Wu X, Qian C, Wu H, et al. Gestated uniform yolk-shell Sn@N-doped hollow mesoporous carbon spheres with buffer space for boosting lithium storage performance. Chem Commun. 2020;56:7629–7632.
  • Ni L, Zhao G, Wang Y, et al. Coaxial carbon/MnO2 hollow nanofibers as sulfur hosts for high-performance lithium-sulfur batteries. Chem Asian J. 2017;12:3128–3134.
  • Yan Z, Liang Y, Xiao J, et al. A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries. Adv Mater. 2020;32:1906700.
  • Luo C, Zhu Y, Borodin O, et al. Activation of oxygen-stabilized sulfur for Li and Na batteries. Adv Funct Mater. 2016;26:745–752.
  • Eng A, Nguyen D, Kumar V, et al. Tailoring binder-cathode interactions for long-life room-temperature sodium-sulfur batteries. J Mater Chem A. 2020;8:22983–22997.
  • Kim I, Kim CH, Sh C, et al. A singular flexible cathode for room temperature sodium/sulfur battery. J Power Sources. 2016;307:31–37.
  • Wang Y, Li X, Wang W, et al. Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Sci China Chem. 2020;63:1402–1415.
  • Salama M R, Attias R, et al. Metal-sulfur batteries: overview and research methods. ACS Energy Lett. 2019;4:436–446.
  • Wu Z, Wang W, Wang Y, et al. Three-dimensional graphene hollow spheres with high sulfur loading for high-performance lithium-sulfur batteries. Electrochim Acta. 2017;224:527–533.
  • Gomes R, Bhattacharyya AJ. Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain Chem Eng. 2020;8:5946–5953.
  • Wang W, Li Y, Feng Y, et al. Asymmetric self-supporting hybrid fluorinated carbon nanotubes/carbon nanotubes sponge electrode for high-performance lithium-polysulfide battery. Chem Eng J. 2018;349:756–765.
  • Liu F, Cheng X, Xu R, et al. Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv Funct Mater. 2018;28:1800394.
  • Li D, Gong B, Cheng X, et al. An efficient strategy toward multichambered carbon nanoboxes with multiple spatial confinement for advanced sodium-sulfur batteries. ACS Nano. 2021;15:20607–20618.
  • Nersisyan HH, Joo SH, Yoo BU, et al. Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery. Carbon. 2016;103:255–262.
  • Tzadikov J, Levy NR, Abisdris L, et al. Bottom-up synthesis of advanced carbonaceous anode materials containing sulfur for Na-ion batteries. Adv Funct Mater. 2020;30:2000592.
  • Yang Q, Yang T, Gao W, et al. An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries. Inorg Chem Front. 2020;7:4396–4403.
  • Zhou H, Xia X, Lv P, et al. C@TiO2/MoO3 composite nanofibers with 1T-phase MoS2 nanograin dopant and stabilized interfaces as anodes for Li- and Na-ion batteries. Chem Sus Chem. 2018;11:4060–4070.
  • Yao Y, Liu P, Zhang Q, et al. Nitrogen-doped micropores binder-free carbon-sulphur composites as the cathode for long-life lithium-sulphur batteries. Mater Lett. 2018;231:159–162.
  • Zhao S, Tian X, Zhou Y, et al. Three-dimensionally interconnected Co9S8/MWCNTs composite cathode host for lithium-sulfur batteries. J Energy Chem. 2020;46:22–29.
  • Wu XW, Xie H, Deng Q, et al. Three-dimensional carbon nanotubes forest/carbon cloth as an efficient electrode for lithium-polysulfide batteries. ACS Appl Mater Interfaces. 2017;9:1553–1561.
  • Xu X, Zhou D, Qin X, et al. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat Commun. 2018;9:3870.
  • Xin S, Yin YX, Guo YG, et al. A high-energy room-temperature sodium-sulfur battery. Adv Mater. 2014;26:1261–1265.
  • Wang YX, Yang J, Lai W, et al. Achieving high-performance room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres. J Am Chem Soc. 2016;138:16576–16579.
  • Guo Q, Li S, Liu X, et al. Ultrastable sodium-sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv Sci. 2020;7:1903246.
  • Yang J, Wang Y, Chou S, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy. 2015;18:133–142.
  • Sajjad M, Hussain T, Singh N, et al. Superior anchoring of sodium polysulfides to the polar C2N 2D material: A potential electrode enhancer in sodium-sulfur batteries. Langmuir. 2020;36:13104–13111.
  • Wu C, Lei Y, Simonelli L, et al. Continuous carbon channels enable full Na-ion accessibility for superior room-temperature Na-S batteries. Adv Mater. 2022;34:2108363.
  • Eng AYS, Wang Y, Nguyen DT, et al. Tunable nitrogen-doping of sulfur host nanostructures for stable and shuttle-free room-temperature sodium-sulfur batteries. Nano Lett. 2021;21:5401–5408.
  • Xia G, Zhang L, Chen X, et al. Carbon hollow nanobubbles on porous carbon nanofibers: An ideal host for high-performance sodium-sulfur batteries and hydrogen storage. Energy Stor Mater. 2018;14:314–323.
  • Ni L, Wu Z, Zhao G, et al. Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries. Small. 2017;13:1603466.
  • Zhang L, Zhang B, Dou Y, et al. Self-assembling hollow carbon nanobeads into double-shell microspheres as a hierarchical sulfur host for sustainable room-temperature sodium-sulfur batteries. ACS Appl Mater Interfaces. 2018;10:20422–20428.
  • Carter R, Oakes L, Douglas A, et al. A sugar-derived room-temperature sodium sulfur battery with long term cycling stability. Nano Lett. 2017;17:1863–1869.
  • Qiang Z, Chen Y-M, Xia Y, et al. Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N,S) nanoporous carbons. Nano Energy. 2017;32:59–66.
  • Yan J, Li W, Wang R, et al. An in situ prepared covalent sulfur-carbon composite electrode for high-performance room-temperature sodium-sulfur batteries. ACS Energy Lett. 2020;5:1307–1315.
  • Lim CYJ, Eng AYS, Handoko AD, et al. Sulfurized cyclopentadienyl nanocomposites for shuttle-free room-temperature sodium-sulfur batteries. Nano Lett. 2021;21:10538–10546.
  • Dong C, Zhou H, Liu H, et al. Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries. J Mater Sci Technol. 2022;113:207–216.
  • Hao Y, Li X, Sun X, et al. Nitrogen-doped graphene nanosheets/S composites as cathode in room-temperature sodium-sulfur batteries. Chem Select. 2017;2:9425–9432.
  • Shi Z, Yang Y, Huang Y, et al. Organic alkali metal salt derived three-dimensional N-doped porous carbon/carbon nanotubes composites with superior Li-S battery performance. ACS Sustain Chem Eng. 2019;7:3995–4003.
  • Li H, Zhao M, Jin B, et al. Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries. Small. 2020;16:1907464.
  • Shen Y, Huang C, Li Y, et al. Enhanced sodium and potassium ions storage of soft carbon by a S/O co-doped strategy. Electrochim Acta. 2021;367:137526.
  • Wang Y, Zhang Y, Shi J, et al. Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Stor Mater. 2019;18:366–374.
  • Yan Z, Xiao J, Lai W, et al. Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat Commun. 2019;10:4793.
  • Lei Y, Wu C, Lu X, et al. Streamline sulfur redox reactions to achieve efficient room-temperature sodium-sulfur batteries. Angew Chem Int Ed. 2022;61:e202200384. doi:https://doi.org/10.1002/anie.202200384.
  • Ma D, Li Y, Yang J, et al. New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric-encapsulated cathode: toward ultrastable free-standing room temperature sodium-sulfur batteries. Adv Funct Mater. 2018;28:1705537.
  • Guo B, Du W, Yang T, et al. Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries. Adv Sci. 2020;7:1902617.
  • Qin G, Liu Y, Han P, et al. High performance room temperature Na-S batteries based on FCNT modified Co3C-Co nanocubes. Chem Eng J. 2020;396:125295.
  • Liu H, Lai W-H, Liang Y, et al. Sustainable S cathodes with synergic electrocatalysis for room-temperature Na-S batteries. J Mater Chem A. 2021;9:566–574.
  • Zhang X, Zhao R, Wu Q, et al. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano. 2017;11:8429–8436.
  • Ma Q, Du G, Zhong W, et al. Template method for fabricating Co and Ni nanoparticles/porous channels carbon for solid-state sodium-sulfur battery. J Colloid Interface Sci. 2020;578:710–716.
  • Tanibata N, Tsukasaki H, Deguchi M, et al. Characterization of sulfur nanocomposite electrodes containing phosphorus sulfide for high-capacity all-solid-state Na/S batteries. Solid State Ionics. 2017;311:6–13.
  • Aslam MK, Seymour ID, Katyal N, et al. Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries. Nat Commun. 2020;11:5242.
  • Sun Y, Shi P, Xiang H, et al. High-safety nonaqueous electrolytes and interphases for sodium-ion batteries. Small. 2019;15:1805479.
  • Bao C, Wang B, Liu P, et al. Solid electrolyte interphases on sodium metal anodes. Adv Funct Mater. 2020;30:2004891.
  • Zhao C, Liu L, Qi X, et al. Solid-state sodium batteries. Adv Energy Mater. 2018;8:1703012.
  • Basile A, Hilder M, Makhlooghiazad F, et al. Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies. Adv Energy Mater. 2018;8:1703491.
  • Fan X, Yue J, Han F, et al. High-performance all-solid-state Na-S battery enabled by casting-annealing technology. ACS Nano. 2018;12:3360–3368.
  • Liu Q, Wu F, Mu D, et al. A theoretical study on Na+ solvation in carbonate ester and ether solvents for sodium-ion batteries. Phys Chem Chem Phys. 2020;22:2164–2175.
  • Syali MS, Kumar D, Mishra K, et al. Recent advances in electrolytes for room-temperature sodium-sulfur batteries: A review. Energy Stor Mater. 2020;31:352–372.
  • Manthiram A, Yu X. Ambient temperature sodium-sulfur batteries. Small. 2015;11:2108–2114.
  • Liu D, Li Z, Li X, et al. Stable room-temperature sodium-sulfur batteries in ether-based electrolytes enabled by the fluoroethylene carbonate additive. ACS Appl Mater Interfaces. 2022;14:6658–6666.
  • Zhao X, Zhu Q, Xu S, et al. Fluoroethylene carbonate as an additive in a carbonates-based electrolyte for enhancing the specific capacity of room-temperature sodium-sulfur cell. J Electroanal Chem. 2019;832:392–398.
  • Wu J, Liu J, Lu Z, et al. Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Energy Stor Mater. 2019;23:8–16.
  • Murugan S, Klostermann SV, Frey W, et al. A sodium bis(perfluoropinacol) borate-based electrolyte for stable, high-performance room temperature sodium-sulfur batteries based on sulfurized poly(acrylonitrile). Electrochem Commun. 2021;132:107137.
  • Le PML, Vo TD, Pan H, et al. Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes. Adv Funct Mater. 2020;30:2001151.
  • Zhen Y, Sa R, Zhou K, et al. Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes. Nano Energy. 2020;74:104895.
  • Chen K, Li H, Xu Y, et al. Untying thioether bond structures enabled by “voltage-scissors” for stable room temperature sodium-sulfur batteries. Nanoscale. 2019;11:5967–5973.
  • Zhang C, Wang F, Han F, et al. Improved electrochemical performance of sodium/potassium-ion batteries in ether-based electrolyte: cases study of MoS2@C and Fe7S8@C anodes. Adv Mater Interfaces. 2020;7:2000486.
  • Ryu H, Kim T, Kim K, et al. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J Power Sources. 2011;196:5186–5190.
  • Su NC, Noor SAM, Roslee MF, et al. Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application. Ionics. 2018;25:541–549.
  • Seh ZW, Sun J, Sun Y, et al. A highly reversible room-temperature sodium metal anode. ACS Cent Sci. 2015;1:449–455.
  • Wu J, Tian Y, Gao Y, et al. Rational electrolyte design toward cyclability remedy for room-temperature sodium-sulfur batteries. Angew Chem Int Ed. 2022: e202205416. doi:https://doi.org/10.1002/anie.202205416.
  • Xiao F, Yang X, Wang H, et al. Covalent encapsulation of sulfur in a MOF-derived S, N-doped porous carbon host realized via the vapor-infiltration method results in enhanced sodium-sulfur battery performance. Adv Energy Mater. 2020;10:2000931.
  • Hu P, Xiao F, Wu Y, et al. Covalent encapsulation of sulfur in a graphene/N-doped carbon host for enhanced sodium-sulfur batteries. Chem Eng J. 2022;443:136257.
  • Luo S, Ruan J, Wang Y, et al. Flower-like interlayer-expanded MoS2-x nanosheets confined in hollow carbon spheres with high-efficiency electrocatalysis sites for advanced sodium-sulfur battery. Small. 2021;17:2101879.
  • Ye H, Ma L, Zhou Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries. Proc Natl Acad Sci USA. 2017;114:13091–13096.
  • Aslam MK, Hussain T, Tabassum H, et al. Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode. Chem Eng J. 2022;429:132389.
  • Ma Q, Zhong W, Du G, et al. Multi-step controllable catalysis method for the defense of sodium polysulfide dissolution in room-temperature Na-S batteries. ACS Appl Mater Interfaces. 2021;13:11852–11860.
  • Tanibata N, Deguchi M, Hayashi A, et al. All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature. Chem Mater. 2017;29:5232–5238.
  • Sun J, Lin Y, Sun Z, et al. Highly cross-linked carbon sponge enables room-temperature long-life semi-liquid Na/polysulfide battery. Mater Today Energy. 2019;14:100342.
  • Nikiforidis G, van de Sanden MCM, Tsampas MN. High and intermediate temperature sodium-sulfur batteries for energy storage: development, challenges and perspectives. RSC Adv. 2019;9:5649–5673.
  • Murgia F, Brighi M, Černý R. Room-temperature-operating Na solid-state battery with complex hydride as electrolyte. Electrochem Commun. 2019;106:106534.
  • Tang B, Jaschin PW, Li X, et al. Critical interface between inorganic solid-state electrolyte and sodium metal. Mater Today. 2020;41:200–218.
  • Youcef HB, Orayech B, Del Amo JML, et al. Functionalized cellulose as quasi single-ion conductors in polymer electrolyte for all-solid-state Li/Na and Li-S batteries. Solid State Ionics. 2020;345:115168.
  • Lu K, Li B, Zhan X, et al. Elastic NaxMoS2-carbon-base triple interface direct robust solid-solid interface for all-solid-state Na-S batteries. Nano Lett. 2020;20:6837–6844.
  • Lu Y, Li L, Zhang Q, et al. Electrolyte and interface engineering for solid-state sodium batteries. Joule. 2018;2:1747–1770.
  • Zhang Z, Wenzel S, Zhu Y, et al. Na3Zr2Si2PO12: a stable Na+-ion solid electrolyte for solid-state batteries. ACS Appl Energy Mater. 2020;3:7427–7437.
  • Yu X, Manthiram A. Sodium-sulfur batteries with a polymer-coated Nasicon-type sodium-ion solid electrolyte. Matter. 2019;1:439–451.
  • Zhao J, Yan G, Zhang X, et al. In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high-performance Li-S batteries. Chem Eng J. 2022;442:136352.
  • Zhao Q, Wang R, Wen J, et al. Separator engineering toward practical Li-S batteries: targeted electrocatalytic sulfur conversion, lithium plating regulation, and thermal tolerance. Nano Energy. 2022;95:106982.
  • Yang T, Guo B, Du W, et al. Design and construction of sodium polysulfides defense system for room-temperature Na-S battery. Adv Sci. 2019;6:1901557.
  • Li H, Zhao M, Jin B, et al. Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries. Small. 2020;16:1907464.
  • Saroha R, Heo J, Liu Y, et al. V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium-sulfur batteries. Chem Eng J. 2022;431:134205.
  • Wang C, Wu K, Cui J, et al. Robust room-temperature sodium-sulfur batteries enabled by a sandwich-structured MXene@C/polyolefin/MXene@C dual-functional separator. Small. 2022;2106983; doi:https://doi.org/10.1002/smll.202106983.
  • Wang YX, Lai WH, Chou SL, et al. Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries. Adv Mater. 2020;32:1903952.
  • Fan L, Li X. Recent advances in effective protection of sodium metal anode. Nano Energy. 2018;53:630–642.
  • Yang X, Gao X, Sun Q, et al. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv Mater. 2019;31:1901220.
  • Eng AYS, Kumar V, Zhang Y, et al. Room-temperature sodium-sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv Energy Mater. 2021;11:2003493.
  • Ge P, Li S, Shuai H, et al. Ultrafast sodium full batteries derived from X-Fe (X = Co, Ni, Mn) prussian blue analogs. Adv Mater. 2019;31:1806092.
  • Zhao C, Lu Y, Yue J, et al. Advanced Na metal anodes. J Energy Chem. 2018;27:1584–1596.
  • Lee B, Paek E, Mitlin D, et al. Sodium metal anodes: emerging solutions to dendrite growth. Chem Rev. 2019;119:5416–5460.
  • Zhao H, Deng N, Yan J, et al. A review on anode for lithium-sulfur batteries: progress and prospects. Chem Eng J. 2018;347:343–365.
  • Wang Y, Huang XL, Liu H, et al. Nanostructure engineering strategies of cathode materials for room-temperature Na-S batteries. ACS Nano. 2022;16:5103.
  • Qian J, Henderson WA, Xu W, et al. High rate and stable cycling of lithium metal anode. Nat Commun. 2015;6:6362.
  • Yamada Y, Wang J, Ko S, et al. Advances and issues in developing salt-concentrated battery electrolytes. Nat Energy. 2019;4:269–280.
  • He M, Lau KC, Ren X, et al. Concentrated electrolyte for the sodium-oxygen battery: solvation structure and improved cycle life. Angew Chem Int Ed Engl. 2016;55:15310–15314.
  • Raccichini R, Dibden JW, Brew A, et al. Ion speciation and transport properties of LiTFSI in 1,3-dioxolane solutions: A case study for Li-S battery applications. J Phys Chem B. 2018;122:267–274.
  • Ge P, Hou HS, Li S, et al. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv Funct Mater. 2018;28:1801765.
  • Cao Y, Yang C, Liu Y, et al. A new polyanion Na3Fe2(PO4)P2O7 cathode with high electrochemical performance for sodium-ion batteries. ACS Energy Lett. 2020;5:3788–3796.
  • Lee J, Lee Y, Lee J, et al. Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries. ACS Appl Mater Interfaces. 2017;9:3723–3732.
  • Zheng J, Chen S, Zhao W, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018;3:315–321.
  • Zhang Q, Lu Y, Miao L, et al. An alternative to lithium metal anodes: Non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries. Angew Chem Int Ed Engl. 2018;57:14796–14800.
  • Zhou W, Li Y, Xin S, et al. Rechargeable sodium all-solid-state battery. ACS Cent Sci. 2017;3:52–57.
  • Wang H, Wang C, Matios E, et al. Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chem Int Ed Engl. 2018;57:7734–7737.
  • Zhang X-Q, Cheng X-B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27:1605989.
  • Han M, Zhu C, Ma T, et al. In situ atomic force microscopy study of nano-micro sodium deposition in ester-based electrolytes. Chem Commun. 2018;54:2381–2384.
  • Lee Y, Lee J, Lee J, et al. Fluoroethylene carbonate-based electrolyte with 1 m sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes. ACS Appl Mater Interfaces. 2018;10:15270–15280.
  • Ding F, Xu W, Graff GL, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013;135:4450–4456.
  • Shi Q, Zhong Y, Wu M, et al. High-performance sodium metal anodes enabled by a bifunctional potassium salt. Angew Chem Int Ed Engl. 2018;57:9069–9072.
  • Ma Q, Liu J, Qi X, et al. A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. J Mater Chem A. 2017;5:7738–7743.
  • Sun B, Pompe C, Dongmo S, et al. Challenges for developing rechargeable room-temperature sodium oxygen batteries. Adv Mater Technol. 2018;3:1800110.
  • Luo W, Lin C, Zhao O, et al. Ultrathin surface coating enables the stable sodium metal anode. Adv Energy Mater. 2017;7:1601526.
  • Wang H, Wang C, Matios E, et al. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes. Nano Lett. 2017;17:6808–6815.
  • Zhao Y, Goncharova L, Zhang Q, et al. Inorganic-organic coating via molecular layer deposition enables long life sodium metal anode. Nano Lett. 2017;17:5653–5659.
  • Kumar V, Wang Y, Eng AYS, et al. A biphasic interphase design enabling high performance in room temperature sodium-sulfur batteries. Cell Reports Phys Sci. 2020;1:100044.
  • Kumar V, Eng AYS, Wang Y, et al. An artificial metal-alloy interphase for high-rate and long-life sodium–sulfur batteries. Energy Stor Mater. 2020;29:1–8.
  • Kim YJ, Lee H, Noh H, et al. Enhancing the cycling stability of sodium metal electrodes by building an inorganic-organic composite protective layer. ACS Appl Mater Interfaces. 2017;9:6000–6006.
  • Tian H, Seh ZW, Yan K, et al. Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv Energy Mater. 2017;7:1602528.
  • Ma C, Xu T, Wang Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Stor Mater. 2020;25:811–826.
  • Wang A, Hu X, Tang H, et al. Processable and moldable sodium-metal anodes. Angew Chem Int Ed Engl. 2017;56:11921–11926.
  • Chi S-S, Qi X-G, Hu Y-S, et al. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv Energy Mater. 2018;8:1702764.
  • Luo W, Zhang Y, Xu S, et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode. Nano Lett. 2017;17:3792–3797.
  • Xu Y, Menon AS, Harks PPRML, et al. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Stor Mater. 2018;12:69–78.
  • Sun B, Li P, Zhang J, et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv Mater. 2018;30:1801334.
  • Li Y, Wang C, Wang W, et al. Enhanced chemical immobilization and catalytic conversion of polysulfide intermediates using metallic Mo nanoclusters for high-performance Li-S batteries. ACS Nano. 2020;14:1148–1157.
  • Lu Y, Zhang Q, Han M, et al. Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires. Chem Commun. 2017;53:12910–12913.
  • Liu S, Tang S, Zhang X, et al. Porous al current collector for dendrite-free Na metal anodes. Nano Lett. 2017;17:5862–5868.
  • Ge P, Li S, Xu L, et al. Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv Energy Mater. 2019;9:1803035.