3,532
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Realizing superior strength-ductility combination in dual-phase AlFeCoNiV high-entropy alloy through composition and microstructure design

, , , , , & show all
Pages 736-743 | Received 28 Jan 2022, Published online: 03 Jul 2022

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18(9):1758–1765.
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698–706.
  • Yi J, Yang L, Wang L, et al. Novel, equimolar, multiphase CoCuNiTiV high-entropy alloy: phase component, microstructure, and compressive properties. Met Mater Int. 2021;27(7):2387–2394.
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534(7606):227–230.
  • Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200.
  • Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun. 2019;10(1):489–497.
  • Shi P, Zhong Y, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater Today. 2020;41:62–71.
  • Tong C-J, Chen M-R, Yeh J-W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005;36(5):1263–1271.
  • Kao Y-F, Chen T-J, Chen S-K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J Alloys Compd 2009;488(1):57–64.
  • Lu W, Luo X, Yang Y, et al. Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy. Mater Chem Phys. 2019;238:121841.
  • Lin L, Xian X, Zhong Z, et al. Microstructure stability and its influence on the mechanical properties of CrMnFeCoNiAl0.25 high entropy alloy. Met Mater Int. 2019;26(8):1192–1199.
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505.
  • Li Z, Fu L, Peng J, et al. Effect of annealing on microstructure and mechanical properties of an ultrafine-structured Al-containing FeCoCrNiMn high-entropy alloy produced by severe cold rolling. Mater Sci Eng A. 2020;786:139446.
  • Sohn SS, Kwiatkowski da Silva A, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv Mater. 2019;31(8):1807142.
  • Asghari-Rad P, Sathiyamoorthi P, Bae JW, et al. Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy. Mater Sci Eng A. 2019;744: 610–617.
  • Salishchev GA, Tikhonovsky MA, Shaysultanov DG, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd. 2014;591:11–21.
  • Bhattacharjee T, Wani IS, Sheikh S, et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci Rep. 2018;8(1):3276.
  • Yang H, Li J, Pan X, et al. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy. J Mater Sci Technol. 2021;72:1–7.
  • Li P, Wang A, Liu CT. Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys. Intermetallics. 2017;87:21–26.
  • Huang X, Dong Y, Lu S, et al. Effects of homogenized treatment on microstructure and mechanical properties of AlCoCrFeNi2.2 near-eutectic high-entropy alloy. Acta Metal Sin. 2021;34(8):1079–1086.
  • Kear BH. Cross slip, antiphase defects and work hardening in ordered Cu3Au. Acta Metall. 1966;14(5):659–677.
  • Kear BH. Dislocation configurations and work hardening in Cu3Au crystals. Acta Metall. 1964;12(5):555–569.
  • Liu CT, Inouye H. Control of ordered structure and ductility of (Fe, Co, Ni)3V alloys. Metall Trans A. 1979;10(10):1515–1525.
  • Matsuda M, Nishimoto T, Matsunaga K, et al. Deformation structure in ductile B2-type Zr–Co–Ni alloys with martensitic transformation. J Mater Sci. 2011;46(12):4221–4227.
  • Vidoz AE, Brown LM. On work-hardening in ordered alloys. Philos Mag. 1962;7(79):1167–1175.
  • Ye Z, Li C, Zheng M, et al. In situ EBSD/DIC-based investigation of deformation and fracture mechanism in FCC- and L12-structured FeCoNiV high-entropy alloys. Int J Plast. 2022;152:103247.
  • Liu CT, Stiegler JO. Ductile ordered intermetallic alloys. Science. 1984;226(4675):636–642.
  • Wang S, Chen S, Jia Y, et al. FCC-L12 ordering transformation in equimolar FeCoNiV multi-principal element alloy. Mater Des. 2019;168:107648.