1,670
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Atomistic processes of diffusion-induced unusual compression fracture in metallic nanocrystals

, , , &
Pages 805-812 | Received 14 Jun 2022, Published online: 06 Aug 2022

References

  • Loh OY, Espinosa HD. Nanoelectromechanical contact switches. Nat Nanotechnol. 2012;7(5):283–295.
  • Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529(7587):509–514.
  • Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun. 2014;5(1):1–8.
  • Cui Z, Han Y, Huang Q, et al. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale. 2018;10(15):6806–6811.
  • Liang J, Li L, Tong K, et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano. 2014;8(2):1590–1600.
  • Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater. 2012;24(37):5117–5122.
  • Yin S, Cheng G, Zhu Y, et al. Competition between shear localization and tensile detwinning in twinned nanowires. Phys Rev Mater. 2020;4(2):023603.
  • Zheng S, Mao SX. Advances in experimental mechanics at atomic scale. Extreme Mech Lett. 2021;45:101284.
  • Wang J, Wang Y, Cai W, et al. Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires. Sci Rep. 2018 Mar 15;8:1–8.
  • Kong D, Xin T, Sun S, et al. Surface energy driven liquid-drop-like pseudoelastic behaviors and in situ atomistic mechanisms of small-sized face-centered-cubic metals. Nano Lett. 2019;19(1):292–298.
  • Ramachandramoorthy R, Wang Y, Aghaei A, et al. Reliability of single crystal silver nanowire-based systems: stress assisted instabilities. ACS Nano. 2017;11(5):4768–4776.
  • Li Q-J, Xu B, Hara S, et al. Sample-size-dependent surface dislocation nucleation in nanoscale crystals. Acta Mater. 2018;145:19–29.
  • Shan ZW, Mishra RK, Syed Asif SA, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater. 2008;7(2):115–119.
  • Chen LY, He M-R, Shin J, et al. Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat Mater. 2015;14(7):707–713.
  • Weinberger CR, Cai W. Plasticity of metal nanowires. J Mater Chem. 2012;22(8):3277–3292.
  • Tian L, Li J, Sun J, et al. Visualizing size-dependent deformation mechanism transition in Sn. Sci Rep. 2013;3(1):2113.
  • Guo W, Wang Z, Li J. Diffusive versus displacive contact plasticity of nanoscale asperities: temperature- and velocity-dependent strongest size. Nano Lett. 2015;15(10):6582–6585.
  • Zhu T, Li J. Ultra-strength materials. Prog Mater Sci. 2010;55(7):710–757.
  • Li QJ, Ma E. When ‘smaller is stronger’ no longer holds. Mater Res Lett. 2018;6(5):283–292.
  • Xie D-G, Nie Z-Y, Shinzato S, et al. Controlled growth of single-crystalline metal nanowires via thermomigration across a nanoscale junction. Nat Commun. 2019;10(1):1–8.
  • Sun J, He L, Lo Y-C, et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat Mater. 2014;13(11):1007–1012.
  • Strachan DR, Smith DE, Fischbein MD, et al. Clean electromigrated nanogaps imaged by transmission electron microscopy. Nano Lett. 2006;6(3):441–444.
  • Zhong L, Sansoz F, He Y, et al. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals. Nat Mater. 2017;16(4):439–445.
  • Wang B, Han Y, Xu S, et al. Mechanically assisted self-healing of ultrathin gold nanowires. Small. 2018;14(20):1704085.
  • Rodrigues V, Fuhrer T, Ugarte D. Signature of atomic structure in the quantum conductance of gold nanowires. Phys Rev Lett. 2000;85(19):4124–4127.
  • Sun S, Kong D, Li D, et al. Atomistic mechanism of stress-induced combined slip and diffusion in Sub-5 nanometer-sized Ag nanowires. ACS Nano. 2019;13(8):8708–8716.
  • Xie KY, Shrestha S, Cao Y, et al. The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars. Acta Mater. 2013;61(2):439–452.
  • Wang J, Zeng Z, Weinberger CR, et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat Mater. 2015;14(6):594–600.
  • Li P, Han Y, Zhou X, et al. Thermal effect and Rayleigh instability of ultrathin 4H hexagonal gold nanoribbons. Matter. 2020;2(3):658–665.
  • Egerton RF, Wang F, Crozier PA. Beam-induced damage to thin specimens in an intense electron probe. Microsc Microanal. 2006;12(1):65–71.
  • Kim SY, Lee I-H, Jun S. Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces. Phys Rev B. 2007;76(24):245407.
  • Hummel R, Geier H. Activation energy for electrotransport in thin silver and gold films. Thin Solid Films. 1975;25(2):335–342.
  • Ala-Nissila T, Ferrando R, Ying S. Collective and single particle diffusion on surfaces. Adv Phys. 2002;51(3):949–1078.
  • Egerton R, Li P, Malac M. Radiation damage in the TEM and SEM. Micron. 2004;35(6):399–409.
  • Takahashi Y, Suzuki A, Furutaku S, et al. Bragg x-ray ptychography of a silicon crystal: visualization of the dislocation strain field and the production of a vortex beam. Phys Rev B. 2013;87(12):121201.
  • Anderson PM, Hirth JP, Lothe J. Theory of dislocations. 3rd ed. New York: Cambridge University Press; 2017. English.
  • Wang B, Liu M, Wang Y, et al. Structures and energetics of silver and gold nanoparticles. J Phys Chem C. 2011;115(23):11374–11381.
  • Zheng S, Shinzato S, Ogata S, et al. Experimental molecular dynamics for individual atomic-scale plastic events in nanoscale crystals. J Mech Phys Solids. 2021;158:104687.
  • Wang X, Zheng S, Shinzato S, et al. Atomistic processes of surface-diffusion-induced abnormal softening in nanoscale metallic crystals. Nat Commun. 2021;12(1):1–9.
  • Mishra S, Gupta SK, Jha PK, et al. Study of dimension dependent diffusion coefficient of titanium dioxide nanoparticles. Mater Chem Phys. 2010;123(2-3):791–794.
  • Guisbiers G, Kazan M, Van Overschelde O, et al. Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C. 2008;112(11):4097–4103.
  • Greer JR, Weinberger CR, Cai W. Comparing the strength of fcc and bcc sub-micrometer pillars: compression experiments and dislocation dynamics simulations. Mater Sci Eng A. 2008;493(1-2):21–25.
  • Brinckmann S, Kim J-Y, Greer JR. Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys Rev Lett. 2008;100(15):155502.
  • Kim J-Y, Jong DC, Greer JR. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 2010;58(7):2355–2363.
  • Huang L, Li Q-J, Shan Z-W, et al. A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum. Nat Commun. 2011;2(1):1–6.
  • Schneider AS, Kaufmann D, Clark BG, et al. Correlation between critical temperature and strength of small-scale bcc pillars. Phys Rev Lett. 2009;103(10):105501.
  • Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal plasticity. Science. 2004;305(5686):986–989.
  • Dick K, Dhanasekaran T, Zhang Z, et al. Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc. 2002;124(10):2312–2317.
  • Cao G, Wang J, Du K, et al. Superplasticity in gold nanowires through the operation of multiple slip systems. Adv Funct Mater. 2018;28(51):1805258.