2,133
Views
2
CrossRef citations to date
0
Altmetric
Perspective Piece

Synthesis and processing of transparent polycrystalline doped yttrium aluminum garnet: a review

&
Pages 1-20 | Received 24 May 2022, Published online: 20 Sep 2022

References

  • Xiao Z, Yu S, Li Y, et al. Materials development and potential applications of transparent ceramics: a review. Mater Sci Eng R Rep. 2020;139:100518. doi:10.1016/J.MSER.2019.100518.
  • Moszyński M, Ludziejewski T, Wolski D, et al. Properties of the YAG:Ce scintillator. Nucl Instrum Methods Phys Res A Accel Spectrom Detect Assoc Equip. 1994;345:461–467. doi:10.1016/0168-9002(94)90500-2.
  • Zhang Q, Lu T, Lu T, et al. Synthesis of pure-phase uranium-doped YAG powder via co-precipitation method. Mater Lett. 2017;188:396–398. doi:10.1016/j.matlet.2016.11.093.
  • Zeng Q, Zhang Q, Qi J, et al. Fabrication and luminescence properties of U:YAG transparent ceramic. Opt Mater 2018;82:56–59. doi:10.1016/j.optmat.2018.05.004.
  • Gong C, Chen J, Huang Q, et al. Synthesis and characterization of structural and optical properties of Ce, U codoped YAG transparent ceramics. Opt Mater Express. 2018;8:1274. doi:10.1364/ome.8.001274.
  • Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc. 1995;78:1033–1040. doi:10.1111/j.1151-2916.1995.tb08433.x.
  • Wagner A, Ratzker B, Kalabukhov S, et al. Photoluminescence of doped YAG transparent ceramics fabricated by spark plasma sintering. Isr J Chem. 2020;60:550–556. doi:10.1002/ijch.201900131.
  • Shawley CR. Optical and defect studies of wide band gap materials [dissertation]. 2008.
  • Burke JE. Lucalox alumina: the ceramic that revolutionized outdoor lighting. MRS Bull. 1996;21:61–68. doi:10.1557/S0883769400046133.
  • Ikesue A, Aung YL. Synthesis and performance of advanced ceramic lasers. J Am Ceram Soc. 2006;89:1936–1944. doi:10.1111/j.1551-2916.2006.01043.x.
  • Lupei V, Lupei A, Georgescu S, et al. The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics. Phys Rev B. 2001;64:92102. doi:10.1103/PhysRevB.64.092102.
  • Apetz R, Van Bruggen MPB. Transparent alumina: a light-scattering model. J Am Ceram Soc. 2003;86:480–486. doi:10.1111/j.1151-2916.2003.tb03325.x.
  • Tsabit AM, Yoon D-H. Review on transparent polycrystalline ceramics. J Korean Ceram Soc. 2021;59:1–24. doi:10.1007/s43207-021-00140-6.
  • Kochawattana S. Phase formation and sintering of YAG ceramics [dissertation]. 2007.
  • Singh G, Anand AS, Selvamani R, et al. Effect of yttrium variation on phase, transparency, and micro-structure of neodymium doped yttrium aluminum garnet ceramic. Scr Mater. 2019;167:61–65. doi:10.1016/j.scriptamat.2019.03.046.
  • Patel AP, Levy MR, Grimes RW, et al. Mechanisms of nonstoichiometry in Y3Al5O12. Appl Phys Lett. 2008;93:191902. doi:10.1063/1.3002303.
  • Villars P, Okamoto H, editors. Al-O-Y vertical section of ternary phase diagram: datasheet from ‘PAULING FILE multinaries edition—2012’. Springer Materials; n.d. Available from: https://materials.springer.com/isp/phase-diagram/docs/c_0204409.
  • Kuklja MM, Pandey R. Atomistic modeling of native point defects in yttrium aluminum garnet crystals. J Am Ceram Soc. 1999;82:2881–2886. doi:10.1111/j.1151-2916.1999.tb02172.x.
  • Jain A, Ong SP, Hautier G, et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:11002. doi:10.1063/1.4812323.
  • Ong SP, Richards WD, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci. 2013;68:314–319. doi:10.1016/j.commatsci.2012.10.028.
  • Gates-Rector S, Blanton T. The powder diffraction file: a quality materials characterization database. Powder Diffr. 2019;34:352–360. doi:10.1017/S0885715619000812.
  • Stevenson AJ, Kupp ER, Messing GL. Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics. J Mater Res. 2011;26:1151–1158. doi:10.1557/jmr.2011.45.
  • Zhou T, Zhang L, Selim FA, et al. Annealing induced discoloration of transparent YAG ceramics using divalent additives in solid-state reaction sintering. J Eur Ceram Soc. 2017;37:4123–4128. doi:10.1016/J.JEURCERAMSOC.2017.05.030.
  • Vorona I, Balabanov A, Dobrotvorska M, et al. Effect of MgO doping on the structure and optical properties of YAG transparent ceramics. J Eur Ceram Soc. 2020; 40:861–866. doi:10.1016/j.jeurceramsoc.2019.10.048.
  • Zhou T, Zhang L, Li Z, et al. Toward vacuum sintering of YAG transparent ceramic using divalent dopant as sintering aids: investigation of microstructural evolution and optical property. Ceram Int. 2017;43:3140–3146. doi:10.1016/j.ceramint.2016.11.131.
  • Fang C, Jing Z, Qin X, et al. Effect of heat treatment of green bodies on the sintering and optical properties of large-size and thick transparent YAG ceramics. Ceram Int. 2021;47:9606–9612. doi:10.1016/j.ceramint.2020.12.097.
  • Mohammadi F, Mirzaee O, Tajally M. The effects of sintering atmosphere on the fabrication of transparent polycrystalline YAG ceramics. Adv Mater Res. 2019;1152:53–63. doi:10.4028/www.scientific.net/amr.1152.53.
  • Sang Y, Liu H, Sun X, et al. Formation and calcination temperature-dependent sintering activity of YAG precursor synthesized via reverse titration method. J Alloys Compd. 2011;509:2407–2413. doi:10.1016/j.jallcom.2010.11.031.
  • Jiang W, Cheng X, Xiong Z, et al. Static and dynamic mechanical properties of yttrium aluminum garnet (YAG). Ceram Int. 2019;45:12256–12263. doi:10.1016/j.ceramint.2019.03.136.
  • Yang H, Qin X, Zhang J, et al. The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic. Opt Mater. 2012;34:940–943. doi:10.1016/j.optmat.2011.05.029.
  • Li Y, Zhou S, Lin H, et al. Fabrication of Nd:YAG transparent ceramics with TEOS, MgO and compound additives as sintering aids. J Alloys Compd. 2010;502:225–230. doi:10.1016/j.jallcom.2010.04.151.
  • Boulesteix R, Bonnet L, Maître A, et al. Silica reactivity during reaction-sintering of Nd:YAG transparent ceramics. J Am Ceram Soc. 2017;100:945–953. doi:10.1111/jace.14680.
  • Li J, Wu Y, Pan Y, et al. Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics. Opt Mater. 2008;31:6–17. doi:10.1016/J.OPTMAT.2007.12.014.
  • Ikesue A, Yoshida K, Yamamoto T, et al. Optical scattering centers in polycrystalline Nd:YAG laser. J Am Ceram Soc. 1997;80:1517–1522. doi:10.1111/j.1151-2916.1997.tb03011.x.
  • Bagayev SN, Osipov VV, Solomonov VI, et al. Fabrication of Nd3+:YAG laser ceramics with various approaches. Opt Mater. 2012;34:1482–1487. doi:10.1016/j.optmat.2012.03.004.
  • Stevenson AJ, Li X, Martinez MA, et al. Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics. J Am Ceram Soc. 2011;94:1380–1387. doi:10.1111/j.1551-2916.2010.04260.x.
  • Pan Y, Liu W, Zhang W, et al. Influence of pH values on (Nd + Y):Al molar ratio of Nd:YAG nanopowders and preparation of transparent ceramics. J Alloys Compd. 2010;503:525–528. doi:10.1016/j.jallcom.2010.05.048.
  • Yagi H, Yanagitani T, Takaichi K, et al. Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics. Opt Mater. 2007;29:1258–1262. doi:10.1016/j.optmat.2006.01.033.
  • Lu J, Ueda KI, Yagi H, et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J Alloys Compd. 2002;341:220–225. doi:10.1016/S0925-8388(02)00083-X.
  • Chaika MA, Mancardi G, Vovk OM. Influence of CaO and SiO2 additives on the sintering behavior of Cr,Ca:YAG ceramics prepared by solid-state reaction sintering. Ceram Int. 2020;46:22781–22786. doi:10.1016/j.ceramint.2020.06.045.
  • Zhang G, Carloni D, Wu Y. 3D printing of transparent YAG ceramics using copolymer-assisted slurry. Ceram Int. 2020;46:17130–17134. doi:10.1016/J.CERAMINT.2020.03.247.
  • Zhang W, Lu TC, Wei N, et al. Co-precipitation synthesis and vacuum sintering of Nd:YAG powders for transparent ceramics. Mater Res Bull. 2015;70:365–372. doi:10.1016/j.materresbull.2015.04.063.
  • Ma B, Wang B, Zhang W, et al. Promotion of powder crystallinity and its influence on the properties of Nd:YAG transparent ceramics. Opt Mater. 2017;64:384–390. doi:10.1016/j.optmat.2017.01.006.
  • Zhang W, Lu T, Ma B, et al. Improvement of optical properties of Nd:YAG transparent ceramics by post-annealing and post hot isostatic pressing. Opt Mater. 2013;35:2405–2410. doi:10.1016/j.optmat.2013.06.042.
  • Zhang W, Lu T, Wei N, et al. Effect of annealing on the optical properties of Nd:YAG transparent ceramics. Opt Mater. 2012;34:685–690. doi:10.1016/j.optmat.2011.10.001.
  • Huang Y, Jiang D, Zhang J, et al. Sintering of transparent Nd:YAG ceramics in oxygen atmosphere. J Rare Earths. 2013;31:153–157. doi:10.1016/S1002-0721(12)60250-6.
  • German RM. Chapter nine—sintering with a liquid phase. In: RM German, editor. Sintering: from empirical observations to scientific principles. Boston (MA): Butterworth-Heinemann; 2014. p. 247–303. doi:10.1016/B978-0-12-401682-8.00009-4.
  • Francis LF. Chapter 5—powder processes. In: LF Francis, editor. Materials processing. Boston (MA): Academic Press; 2016. p. 343–414. doi:10.1016/B978-0-12-385132-1.00005-7.
  • Veith M, Mathur S, Kareiva A, et al. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol–gel methods. J Mater Chem. 1999;9:3069–3079. doi:10.1039/A903664D.
  • Zhydachevskii Y, Syvorotka II, Vasylechko L, et al. Crystal structure and luminescent properties of nanocrystalline YAG and YAG:Nd synthesized by sol-gel method. Opt Mater. 2012;34:1984–1989. doi:10.1016/j.optmat.2011.12.023.
  • Qiu F, Pu X, Li J, et al. Thermal behavior of the YAG precursor prepared by sol-gel combustion process. Ceram Int. 2005;31:663–665. doi:10.1016/j.ceramint.2004.08.004.
  • Sakar N, Gergeroglu H, Akalin SA, et al. Synthesis, structural and optical characterization of Nd:YAG powders via flame spray pyrolysis. Opt Mater. 2020;103:109819. doi:10.1016/j.optmat.2020.109819.
  • Kinsman KM, McKittrick J, Sluzky E, et al. Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAG:Cr) phosphors. J Am Ceram Soc. 1994;77:2866–2872. doi:10.1111/j.1151-2916.1994.tb04516.x.
  • Li JG, Ikegami T, Lee JH, et al. Characterization of yttrium aluminate garnet precursors synthesized via precipitation using ammonium bicarbonate as the precipitant. J Mater Res. 2000;15:2375–2386. doi:10.1557/JMR.2000.0342.
  • Tong S, Lu T, Guo W. Synthesis of YAG powder by alcohol-water co-precipitation method. Mater Lett. 2007;61:4287–4289. doi:10.1016/j.matlet.2007.01.087.
  • Wang L, Kou H, Zeng Y, et al. The effect of precipitant concentration on the formation procedure of yttrium aluminum garnet (YAG) phase. Ceram Int. 2012;38:3763–3771. doi:10.1016/j.ceramint.2012.01.022.
  • Chen X, Lu T, Wei N, et al. Systematic optimization of ball milling for highly transparent Yb:YAG ceramic using co-precipitated raw powders. J Alloys Compd. 2015;653:552–560. doi:10.1016/j.jallcom.2015.09.026.
  • Tong SH, Lu TC, Guo W, et al. Sinterability of Nd:YAG powder prepared by alcohol-water co-precipitation method. Key Eng Mater. 2008;368–372:423–425. doi:10.4028/www.scientific.net/kem.368-372.423.
  • Uematsu K. Processing defects in ceramic powders and powder compacts. Adv Powder Technol. 2014;25:154–162. doi:10.1016/j.apt.2014.01.009.
  • Crouch IG, Franks GV, Tallon C, et al. 7—Glasses and ceramics. In: IG Crouch, editor. The science of armour materials. Oxford: Woodhead Publishing; 2017. p. 331–393. doi:10.1016/B978-0-08-100704-4.00007-4.
  • Rahaman MN. Ceramic processing and sintering. 2nd ed. Boca Raton (FL): CPC Press; 2017. doi:10.1201/9781315274126.
  • Chaim R, Marder-Jaeckel R, Shen JZ. Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering. Mater Sci Eng A. 2006;429:74–78. doi:10.1016/j.msea.2006.04.072.
  • Chaim R, Kalina M, Shen JZ. Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering. J Eur Ceram Soc. 2007;27:3331–3337. doi:10.1016/j.jeurceramsoc.2007.02.193.
  • Frage N, Kalabukhov S, Sverdlov N, et al. Densification of transparent yttrium aluminum garnet (YAG) by SPS processing. J Eur Ceram Soc. 2010;30:3331–3337. doi:10.1016/j.jeurceramsoc.2010.08.006.
  • Frage N, Kalabukhov S, Sverdlov N, et al. Effect of the spark plasma sintering (SPS) parameters and LiF doping on the mechanical properties and the transparency of polycrystalline Nd-YAG. Ceram Int. 2012;38:5513–5519. doi:10.1016/j.ceramint.2012.03.066.
  • Golovkina LS, Orlova AI, Nokhrin V, et al. Spark plasma sintering of fine-grain ceramic-metal composites based on garnet-structure oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. Mater Chem Phys. 2018;214:516–526. doi:10.1016/j.matchemphys.2018.03.091.
  • Kosyanov DY, Vornovskikh AA, Zakharenko AM, et al. Influence of sintering parameters on transparency of reactive SPSed Nd3+:YAG ceramics. Opt Mater. 2021;112:110760. doi:10.1016/j.optmat.2020.110760.
  • Rahmani M, Mirzaee O, Tajally M, et al. A comparative study of synthesis and spark plasma sintering of YAG nano powders by different co-precipitation methods. Ceram Int. 2018;44:10035–10046. doi:10.1016/j.ceramint.2018.02.148.
  • Sokol M, Kalabukhov S, Kasiyan V, et al. Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG. Opt Mater. 2014;38:204–210. doi:10.1016/j.optmat.2014.10.030.
  • Spina G, Bonnefont G, Palmero P, et al. Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics. J Eur Ceram Soc. 2012;32:2957–2964. doi:10.1016/j.jeurceramsoc.2012.02.052.
  • Suárez M, Fernández A, Menéndez JL, et al. Transparent yttrium aluminium garnet obtained by spark plasma sintering of lyophilized gels. J Nanomater. 2009;2009:138490. doi:10.1155/2009/138490.
  • Wagner A, Ratzker B, Kalabukhov S, et al. Highly-doped Nd:YAG ceramics fabricated by conventional and high pressure SPS. Ceram Int. 2019;45:12279–12284. doi:10.1016/j.ceramint.2019.03.141.
  • Wagner A, Ratzker B, Kalabukhov S, et al. Residual porosity and optical properties of spark plasma sintered transparent polycrystalline cerium-doped YAG. J Eur Ceram Soc. 2019;39:1436–1442. doi:10.1016/j.jeurceramsoc.2018.11.006.
  • Wagner A, Meshorer Y, Ratzker B, et al. Pressure-assisted sintering and characterization of Nd:YAG ceramic lasers. Sci Rep. 2021;11:1–12. doi:10.1038/s41598-021-81194-8.
  • Wang R, Liu J, Ji W, et al. Effects of ball-milling on fabrication of YAG ceramics by a phase transformation assisted spark plasma sintering. J Alloys Compd. 2017;701:279–287. doi:10.1016/j.jallcom.2017.01.128.
  • Zhang G, Carloni D, Wu Y. Ultraviolet emission transparent Gd:YAG ceramics processed by solid-state reaction spark plasma sintering. J Am Ceram Soc. 2020;103:839–848. doi:10.1111/jace.16785.
  • Ikesue A, Kamata K. Microstructure and optical properties of hot isostatically pressed Nd:YAG ceramics. J Am Ceram Soc. 1996;79:1927–1933. doi:10.1111/j.1151-2916.1996.tb08015.x.
  • Lee SH, Kupp ER, Stevenson AJ, et al. Hot isostatic pressing of transparent Nd:Yag ceramics. J Am Ceram Soc. 2009;92:1456–1463. doi:10.1111/j.1551-2916.2009.03029.x.
  • Esposito L, Piancastelli A, Bykov Y, et al. Microwave sintering of Yb:YAG transparent laser ceramics. Opt Mater 2013;35:761–765. doi:10.1016/j.optmat.2012.07.014.
  • Chen Z, Li J, Xu J, et al. Fabrication of YAG transparent ceramics by two-step sintering. Ceram Int. 2008;34:1709–1712. doi:10.1016/j.ceramint.2007.05.015.
  • Stevenson AJ. The effects of sintering aids on defects, densification, and single crystal conversion of transparent Nd:YAG ceramics [dissertation]. Pennsylvania State University; 2010.
  • Coble RL. Sintering crystalline solids. I. Intermediate and final state diffusion models. J Appl Phys. 1961;32:787–792. doi:10.1063/1.1736107.
  • German RM. Chapter seven—thermodynamic and kinetic treatments. In: RM German, editor. Sintering: from empirical observations to scientific principles. Boston (MA): Butterworth-Heinemann; 2014. p. 183–226. doi:10.1016/B978-0-12-401682-8.00007-0.
  • Coble RL. Sintering alumina: effect of atmospheres. J Am Ceram Soc. 1962;45:123–127. doi:10.1111/j.1151-2916.1962.tb11099.x.
  • Huang Y, Jiang D, Zhang J, et al. Sintering of transparent yttria ceramics in oxygen atmosphere. J Am Ceram Soc. 2010;93:2964–2967. doi:10.1111/j.1551-2916.2010.03940.x.
  • Gupta RK, Anil Kumar V, Khanra GP. Reactive and liquid-phase sintering techniques. In: R Mitra, editor. Intermetallic matrix composites. Cambridge: Elsevier; 2018. p. 303–318. doi:10.1016/b978-0-85709-346-2.00011-x.
  • Zhang L, Zhou T, Selim FA, et al. Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic. J Am Ceram Soc. 2018;101:703–712. doi:10.1111/jace.15233.
  • Kochawattana S, Stevenson A, Lee S-H, et al. Sintering and grain growth in SiO2 doped Nd:YAG. J Eur Ceram Soc. 2008;28:1527–1534. doi:10.1016/j.jeurceramsoc.2007.12.006.