3,681
Views
8
CrossRef citations to date
0
Altmetric
Original Reports

Overcoming the strength-ductility trade-off in refractory medium-entropy alloys via controlled B2 ordering

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 813-823 | Received 13 Jun 2022, Published online: 08 Aug 2022

References

  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18:1758–1765.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Senkov ON, Miracle DB, Chaput KJ, et al. Development and exploration of refractory high entropy alloys - a review. J Mater Res. 2018;33:3092–3128.
  • Senkov ON, Gorsse S, Miracle DB. High temperature strength of refractory complex concentrated alloys. Acta Mater. 2019;175:394–405.
  • Jensen JK, Welk BA, Williams REA, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr Mater. 2016;121:1–4.
  • Senkov ON, Isheim D, Seidman DN, et al. Development of a refractory high entropy superalloy. Entropy . 2016;18:1–13.
  • Yurchenko NY, Stepanov ND, Zherebtsov S V, et al. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mater Sci Eng A. 2017;704:82–90.
  • Stepanov ND, Yurchenko NY, Gridneva AO, et al. Structure and hardness of B2 ordered refractory AlNbTiVZr0.5 high entropy alloy after high-pressure torsion. Mater Sci Eng A. 2018;716:308–315.
  • Senkov ON, Jensen JK, Pilchak AL, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater Des. 2018;139:498–511.
  • Soni V, Senkov ON, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy. Sci Rep. 2018: 1–10.
  • Wang W, Zhang Z, Niu J, et al. Effect of Al addition on structural evolution and mechanical properties of the AlxHfNbTiZr high-entropy alloys. Mater Today Commun. 2018;16:242–249.
  • Soni V, Gwalani B, Senkov ON, et al. Phase stability as a function of temperature in a refractory high-entropy alloy. J Mater Res. 2018;33:3235–3246.
  • Yurchenko NY, Stepanov ND, Gridneva AO, et al. Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys. J Alloys Compd. 2018;757:403–414.
  • Chen H, Kauffmann A, Seils S, et al. Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al. Acta Mater. 2019;176:123–133.
  • Schliephake D, Medvedev AE, Imran MK, et al. Precipitation behaviour and mechanical properties of a novel Al0.5MoTaTi complex concentrated alloy. Scr Mater. 2019;173:16–20.
  • Yurchenko N, Panina E, Tikhonovsky M, et al. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite. Mater Lett. 2020;264:127372.
  • Soni V, Senkov ON, Couzinie J-P, et al. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40. Materialia [Internet]. 2020;9:100569.
  • Soni V, Gwalani B, Alam T, et al. Phase inversion in a two-phase, BCC + B2, refractory high entropy alloy. Acta Mater. 2020;185:89–97.
  • Laube S, Chen H, Kauffmann A, et al. Controlling crystallographic ordering in Mo–Cr–Ti–Al high entropy alloys to enhance ductility. J Alloys Compd. 2020;823:153805.
  • Müller F, Gorr B, Christ H-J, et al. Formation of complex intermetallic phases in novel refractory high-entropy alloys NbMoCrTiAl and TaMoCrTiAl: thermodynamic assessment and experimental validation. J Alloys Compd. 2020: 155726.
  • Yurchenko N, Panina E, Tikhonovsky M, et al. A new refractory Ti-Nb-Hf-Al high entropy alloy strengthened by orthorhombic phase particles. Int J Refract Met Hard Mater. 2020;92:105322.
  • Whitfield TE, Pickering EJ, Owen LR, et al. The effect of Al on the formation and stability of a BCC – B2 microstructure in a refractory metal high entropy superalloy system. Materialia. 2020;13:100858.
  • Miracle DB, Tsai MH, Senkov ON, et al. Refractory high entropy superalloys (RSAs). Scr Mater. 2020;187:445–452.
  • Senkov ON, Couzinie J-P, Rao SI, et al. Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40. Materialia. 2020;9:100627.
  • Kral P, Blum W, Dvorak J, et al. Creep behavior of an AlTiVNbZr0.25 high entropy alloy at 1073 K. Mater Sci Eng A. 2020;783:139291.
  • Wang Q, Han J, Liu Y, et al. Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0.4Nb0.5Ta0.5TiZr0.8 refractory high entropy alloy. Scr Mater. 2021;190:40–45.
  • Yurchenko N, Panina E, Zherebtsov S, et al. Design and characterization of eutectic refractory high entropy alloys. Materialia. 2021;16:101057.
  • Panina E, Yurchenko N, Zherebtsov S, et al. Aging behavior of two refractory Ti-Nb-(Hf. Zr)-Al high entropy alloys. J Alloys Compd. 2021;889:161586.
  • Liu XW, Bai ZC, Ding XF, et al. A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability. Mater Lett. 2021;287:129255.
  • Qiao D, Liang H, Wu S, et al. The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Alx refractory high-entropy alloys. Mater Charact. 2021;178:111287.
  • Laube S, Schellert S, Tirunilai AS, et al. Microstructure tailoring of Al-containing compositionally complex alloys by controlling the sequence of precipitation and ordering. Acta Mater. 2021;218:117217.
  • Yurchenko NY, Panina ES, Salishchev GA, et al. Design and characterization of Al-Cr-Nb-Ti-V-Zr high-entropy alloys for high-temperature applications. Phys Mesomech. 2021;24:642–652.
  • Yang X, An Z, Zhai Y, et al. Effect of Al content on the thermal oxidation behaviour of AlHfMoNbTi high-entropy alloys analysed by in situ environmental TEM. Corros Sci. 2021;191:109711.
  • Wang Z, Jin D, Han J, et al. Microstructures and mechanical properties of Al-Ti-Zr-Nb-Ta-Mo-V refractory high-entropy alloys with coherent B2 nanoprecipitation. Cryst. 2021;11:833.
  • Dong Y-G, Chen S, Jia N-N, et al. Microstructures and mechanical properties of Ta–Nb–Zr–Ti–Al refractory high entropy alloys with varying Ta/Ti ratios. Tungsten. 2021;3:406–414.
  • Pang J, Zhang H, Zhang L, et al. A ductile Nb40Ti25Al15V10Ta5Hf3W2 refractory high entropy alloy with high specific strength for high-temperature applications. Mater Sci Eng A. 2022;831:142290.
  • Yurchenko N, Panina E, Belyakov A, et al. On the yield stress anomaly in a B2-ordered refractory AlNbTiVZr0.25 high-entropy alloy. Mater Lett. 2022;311:131584.
  • Zhao B, Chen G, Lv S, et al. A refractory multi-principal element alloy with superior elevated-temperature strength. J Alloys Compd. 2022;896:163129.
  • Dasari S, Soni V, Sharma A, et al. Concomitant clustering and ordering leading to B2 + BCC microstructures in refractory high entropy alloys. Trans Indian Inst Met. 2022;75:907–916.
  • Couzinié J-P, Heczko M, Mazánová V, et al. High-temperature deformation mechanisms in a BCC + B2 refractory complex concentrated alloy. Acta Mater. 2022;233:117995.
  • Senkov ON, Miracle DB, Rao SI. Correlations to improve room temperature ductility of refractory complex concentrated alloys. Mater Sci Eng A. 2021;820:141512.
  • Eleti RR, Stepanov N, Yurchenko N, et al. Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys. Scr Mater. 2021;200:113927.
  • Eleti RR, Stepanov N, Yurchenko N, et al. Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy. Scr Mater. 2022;209:114367.
  • Pang J, Zhang H, Zhang L, et al. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping. J Mater Sci Technol. 2021;78:74–80.
  • Akmal M, Seong HW, Ryu HJ. Mo and Ta addition in NbTiZr medium entropy alloy to overcome tensile yield strength-ductility trade-off. J Mater Sci Technol. 2022;109:176–185.
  • Zherebtsov S, Yurchenko N, Panina E, et al. Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy. Intermetallics. 2020;116:106652.
  • Zherebtsov S, Yurchenko N, Panina E, et al. Microband-induced plasticity in a Ti-rich high-entropy alloy. J Alloys Compd. 2020;842:155868.
  • Loretto MH, Hu D, Li YG. Microstructural studies on some ordered Ti-based alloys. Intermetallics. 2000;8:1243–1249.
  • Liao YC, Ye WT, Chen PS, et al. Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti60Alx(VCrNb)40-x medium-entropy alloys. Intermetallics. 2021;135:107213.
  • Wang L, Chen S, Li B, et al. Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Mater Sci Eng A. 2021;814:141234.
  • Li YG, Blenkinsop PA, Loretto MH, et al. Effect of aluminium on ordering of highly stabilised β-Ti-V-Cr alloys. Mater Sci Technol. 1998;14:732–737.
  • Yang KH, Choo WK. Evidence of carbon ordering and morphology change in a cubic carbide phase. Philos Mag Lett. 1990;62:221–226.
  • Kim SD, Park JY, Park SJ, et al. Direct observation of dislocation plasticity in high-Mn lightweight steel by in-situ TEM. Sci Rep. 2019;9:1–13.
  • Zhang R, Zhao S, Ophus C, et al. Direct imaging of short-range order and its impact on deformation in Ti-6Al. Sci Adv. 2019;5:eaax2799.
  • Chong Y, Zhang R, Hooshmand MS, et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al. Nat Commun. 2021;12:1–9.
  • Miao J, Slone C, Dasari S, et al. Ordering effects on deformation substructures and strain hardening behavior of a CrCoNi based medium entropy alloy. Acta Mater. 2021;210:116829.
  • Dasari S, Jagetia A, Sharma A, et al. Tuning the degree of chemical ordering in the solid solution of a complex concentrated alloy and its impact on mechanical properties. Acta Mater. 2021;212:116938.
  • Passa E, Shao G, Tsakiropoulos P. Beta phase decomposition in Nb-17 at.% Al alloy. Philos Mag A Phys Condens Matter. Struct Defects Mech Prop. 1997;75:637–655.
  • Chen X, Wang Q, Cheng Z, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nat. 2021;592:712–716.
  • Wang J, Jiang P, Yuan F, et al. Chemical medium-range order in a medium-entropy alloy. Nat Commun. 2022;131:1–6.
  • Saito T, Furuta T, Hwang J-H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300:464–467.
  • Lai MJ, Tasan CC, Raabe D. Deformation mechanism of ω-enriched Ti–Nb-based gum metal: dislocation channeling and deformation induced ω–β transformation. Acta Mater. 2015;100:290–300.
  • Wei S, Kim SJ, Kang J, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat Mater 2020 1911. 2020;19:1175–1181.
  • Wang Y, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates. Proc Natl Acad Sci U S A. 2007;104:11155–11160.
  • Eleti RR, Stepanov N, Zherebtsov S. Mechanical behavior and thermal activation analysis of HfNbTaTiZr body-centered cubic high-entropy alloy during tensile deformation at 77 K. Scr Mater. 2020;188:118–123.
  • Lin C-M, Juan C-C, Chang C-H, et al. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J Alloys Compd. 2015;624:100–107.
  • Wu Y, Si J, Lin D, et al. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater Sci Eng A. 2018;724:249–259.
  • Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 2016;106:87–97.
  • Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563:546–550.
  • Li Q-J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat Commun. 2019;10:3563.
  • Schön CG. On short-range order strengthening and its role in high-entropy alloys. Scr Mater. 2021;196:113754.
  • Pang J, Zhang H, Zhang L, et al. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Mater Lett. 2021;290:129428.
  • Fisher JC. On the strength of solid solution alloys. Acta Metall. 1954;2:9–10.
  • Gerold V, Karnthaler HP. On the origin of planar slip in f.c.c. alloys. Acta Metall. 1989;37:2177–2183.
  • Li J, Chen Y, He Q, et al. Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proc Natl Acad Sci. 2022;119:1–7.
  • Li YG, Blenkinsop PA, Loretto MH, et al. Effect of aluminium on deformation structure of highly stabilised beta-Ti-V-Cr alloys. Mater Sci Technol. 1999;15:151–155.
  • Banerjee D, Gogia AK, Nandy TK. Deformation structure in a Ti-24Al-11Nb alloy. Metall Trans A. 1990;21:627–639.
  • Lilensten L, Couzinié J-P, Perrière L, et al. Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 2018;142:131–141.