2,670
Views
2
CrossRef citations to date
0
Altmetric
Brief Overview

Emerging low-dimensional materials for nanoelectromechanical systems resonators

, , , , ORCID Icon, & ORCID Icon show all
Pages 21-52 | Received 23 May 2022, Published online: 20 Sep 2022

References

  • Henry HXM, Zorman CA, Mehregany M, et al. Nanoelectromechanical systems: nanodevice motion at microwave frequencies. Nature. 2003;421:496.
  • Hafner J, Teuschel M, Disnan D, et al. Large bias-induced piezoelectric response in the ferroelectric polymer P(VDF-TrFE) for MEMS resonators. Mater Res Lett. 2021;9:195–203.
  • Craighead HG. Nanoelectromechanical systems. Science. 2000;290:1532–1535.
  • Ekinci KL. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small. 2005;1:786–797.
  • Poot M, van der Zant HSJ. Mechanical systems in the quantum regime. Phys Rep. 2012;511:273–335.
  • Schmid S, Villanueva LG, Roukes ML. Fundamentals of nanomechanical resonators. Cham: Springer International Publishing AG; 2016.
  • Li TF, Pashkin YA, Astafiev O, et al. High-frequency metallic nanomechanical resonators. Appl Phys Lett. 2008;92:043112.
  • Carr DW, Evoy S, Sekaric L, et al. Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl Phys Lett. 1999;75:920–922.
  • Oh SH, Altug H, Jin X, et al. Nanophotonic biosensors harnessing van der Waals materials. Nat Commun. 2021;12:3824.
  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442:282–286.
  • Seo J, Swinnich E, Zhang Y, et al. Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications. Mater Res Lett. 2020;8:123–144.
  • Li D, Kaner RB. Graphene-based materials. Science. 2008;320:1170–1171.
  • Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327:1603–1607.
  • Vogl T, Sripathy K, Sharma A, et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat Commun. 2019;10:1202.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
  • Thostenson ET, Ren Z, Chou T. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61:1899–1912.
  • Baughman RH, Zakhidov AA, Walt ADH. Carbon nanotubes: the route toward applications. Science. 2002;297:787–792.
  • Peng HB, Chang CW, Aloni S, et al. Ultrahigh frequency nanotube resonators. Phys Rev Lett. 2006;97:87203.
  • Dresselhaus MS, Jorio A, Hofmann M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010;10:751–758.
  • De Volder MFL, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–539.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534.
  • Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics. 2010;4:611–622.
  • Gruber J, Barsoum MW, Tucker GJ. Characterization of ripplocation mobility in graphite. Mater Res Lett. 2020;8:82–87.
  • Shin DH, Kim H, Lee SW. Nanoelectromechanical graphene switches for the multi-valued logic systems. Nanotechnology. 2019;30:364005.
  • Xie Y, Lee J, Wang Y, et al. Straining and tuning atomic layer nanoelectromechanical resonators via comb-drive MEMS actuators. Adv Mater Technol. 2021;6:2000794.
  • Ni K, Du J, Yang J, et al. Stronger interlayer interactions contribute to faster Hot carrier cooling of bilayer graphene under pressure. Phys Rev Lett. 2021;126:27402.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388.
  • Saeed M, Alshammari Y, Majeed SA, et al. Chemical vapour deposition of graphene–synthesis, characterisation, and applications: A review. Molecules. 2020;25:3856.
  • Wang N, Samani MK, Li H, et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering. Small. 2018;14:1801346.
  • Chejanovsky N, Mukherjee A, Geng J, et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat Mater. 2021;20:1079–1084.
  • Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics. 2016;10:262–266.
  • Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7:699–712.
  • Wang Y, Nie Z, Wang F. Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors. Light Sci Appl. 2020;9:192.
  • Chen J, Tan J, Wu G, et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light Sci Appl. 2019;8:8.
  • Oliva R, Woźniak T, Dybala F, et al. Hidden spin-polarized bands in semiconducting 2H-MoTe2. Mater Res Lett. 2020;8:75–81.
  • Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics. 2016;10:216–226.
  • Chitara B, Ya’akobovitz A. High-frequency electromechanical resonators based on thin GaTe. Nanotechnology. 2017;28:42LT02.
  • Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9:372–377.
  • Liu H, Neal AT, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. 2014;8:4033–4041.
  • Youngblood N, Chen C, Koester SJ, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics. 2015;9:247–252.
  • Li X, Yu Z, Xiong X, et al. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci Adv. 2019;5:eaau3194.
  • Kim H, Uddin SZ, Lien D, et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature. 2021;596:232–237.
  • Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–4253.
  • Shao Y, Chen C, He Q, et al. Broadband visible nonlinear absorption and ultrafast dynamics of the Ti3C2 nanosheet. Nanomaterials. 2020;10:2544.
  • Castellanos-Gomez A, Singh V, van der Zant HSJ, et al. Mechanics of freely-suspended ultrathin layered materials. Ann Phys-Berlin. 2015;527:27–44.
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science. 2016;353:aac9439.
  • Pei J, Yang J, Yildirim T, et al. Many-body complexes in 2D semiconductors. Adv Mater. 2019;31:1706945.
  • Fan S, Vu QA, Tran MD, et al. Transfer assembly for two-dimensional van der Waals heterostructures. 2D Mater. 2020;7:22005.
  • Lemme MC, Wagner S, Lee K, et al. Nanoelectromechanical sensors based on suspended 2D materials. Research. 2020;2020:8748602.
  • Steeneken PG, Dolleman RJ, Davidovikj D, et al. Dynamics of 2D material membranes. 2D Mater. 2021;8:42001.
  • Yildirim T, Zhang L, Neupane GP, et al. Towards future physics and applications via two-dimensional material NEMS resonators. Nanoscale. 2020;12:22366–22385.
  • Barton RA, Storch IR, Adiga VP, et al. Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Lett. 2012;12:4681–4686.
  • De Alba R, Massel F, Storch IR, et al. Tunable phonon-cavity coupling in graphene membranes. Nat Nanotechnol. 2016;11:741–746.
  • Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014;1:11002.
  • Castellanos-Gomez A, Wojtaszek M, Tombros N, et al. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small. 2011;7:2491–2497.
  • Castellanos-Gomez A, van Leeuwen R, Buscema M, et al. Single-Layer MoS2 mechanical resonators. Adv Mater. 2013;25:6719–6723.
  • Wang Z, Jia H, Zheng X, et al. Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy. Nano Lett. 2016;16:5394–5400.
  • Schneider GF, Calado VE, Zandbergen H, et al. Wedging transfer of nanostructures. Nano Lett. 2010;10:1912–1916.
  • Feng XL, He R, Yang P, et al. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 2007;7:1953–1959.
  • Song X, Oksanen M, Sillanpää MA, et al. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout. Nano Lett. 2012;12:198–202.
  • Morell N, Reserbat-Plantey A, Tsioutsios I, et al. High quality factor mechanical resonators based on WSe2 monolayers. Nano Lett. 2016;16:5102–5108.
  • Cartamil-Bueno SJ, Cavalieri M, Wang R, et al. Mechanical characterization and cleaning of CVD single-layer h-BN resonators. NPJ 2D Mater Appl. 2017;1:16.
  • Arnold G, Winkler R, Stermitz M, et al. Tunable 3D nanoresonators for Gas-sensing applications. Adv Funct Mater. 2018;28:1707387.
  • Teh KS. Additive direct-write microfabrication for MEMS: A review. Front. Mech Eng. 2017;12:490–509.
  • Gruber G, Urgell C, Tavernarakis A, et al. Mass sensing for the advanced fabrication of nanomechanical resonators. Nano Lett. 2019;19:6987–6992.
  • Sampathkumar A, Murray TW, Ekinci KL. Photothermal operation of high frequency nanoelectromechanical systems. Appl Phys Lett. 2006;88:223104.
  • Verbridge SS, Parpia JM, Reichenbach RB, et al. High quality factor resonance at room temperature with nanostrings under high tensile stress. J Appl Phys. 2006;99:124304.
  • van Leeuwen R, Castellanos-Gomez A, Steele GA, et al. Time-domain response of atomically thin MoS2 nanomechanical resonators. Appl Phys Lett. 2014;105:41911.
  • Lee J, Wang Z, He K, et al. Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range. Sci Adv. 2018;4:eaao6653.
  • Barnard AW, Zhang M, Wiederhecker GS, et al. Real-time vibrations of a carbon nanotube. Nature. 2019;566:89–93.
  • Wei L, Kuai X, Bao Y, et al. The recent progress of MEMS/NEMS resonators. Micromachines (Basel). 2021;12:724.
  • Schmid S, Senn P, Hierold C. Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment. Sensor Actuat A-Phys. 2008;145-146:442–448.
  • Cleland AN. Foundations of nanomechanics: from solid-state theory to device applications. New York: Springer-Verlag Berlin Heidelberg; 2003. ISBN 3-540-43661-8.
  • Adiga VP, Ilic B, Barton RA, et al. Approaching intrinsic performance in ultra-thin silicon nitride drum resonators. J Appl Phys. 2012;112:64323.
  • Li M, Myers EB, Tang HX, et al. Nanoelectromechanical resonator arrays for ultrafast, Gas-phase chromatographic chemical analysis. Nano Lett. 2010;10:3899–3903.
  • Lee J, Wang Z, He K, et al. High frequency MoS2 nanomechanical resonators. ACS Nano. 2013;7:6086–6091.
  • Yildirim T, Cho K, Wu X, et al. Probing the chaotic boundary of a membrane resonator with nanowire arrays. Nanoscale. 2017;9:17524–17532.
  • Matheny MH, Villanueva LG, Karabalin RB, et al. Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 2013;13:1622–1626.
  • Davidovikj D, Alijani F, Cartamil-Bueno SJ, et al. Nonlinear dynamic characterization of two-dimensional materials. Nat Commun. 2017;8:1253.
  • Inoue T, Anno Y, Imakita Y, et al. Resonance control of a graphene drum resonator in a nonlinear regime by a standing wave of light. ACS Omega. 2017;2:5792–5797.
  • James M, Gere BJG. Mechanics of materials. Stamford: Cengage Learning; 2012. ISBN-10:1111577730.
  • Villanueva LG, Karabalin RB, Matheny MH, et al. Nonlinearity in nanomechanical cantilevers. Phys Rev B. 2013;87:24304.
  • Singh V, Bosman SJ, Schneider BH, et al. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat Nanotechnol. 2014;9:820–824.
  • Horber JKH, Miles MJ. Scanning probe evolution in biology. Science. 2003;302:1002–1005.
  • Karrai K, Metzger CH. Cavity cooling of a microlever. Nature. 2004;432:1002–1005.
  • Eriksson AM, Midtvedt D, Croy A, et al. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators. Nanotechnology. 2013;24:395702.
  • Weaver W, Timoshenko SP, Young DH. Vibration problems in engineering. New York: Wiley Inter-science; 1990.
  • Lassagne B, Garcia-Sanchez D, Aguasca A, et al. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 2008;8:3735–3738.
  • Chan J, Safavi-Naeini AH, Hill JT, et al. High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer. Appl Phys Lett. 2012;101:081115.
  • Gröblacher S, Hertzberg JB, Vanner MR, et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat Phys. 2009;5:485–488.
  • Ni K-K, Norte R, Wilson DJ, et al. Enhancement of mechanical Q factors by optical trapping. Phys Rev Lett. 2012;108:214302.
  • Bao M. Analysis and design principles of MEMS devices. Amsterdam: Elsevier; 2005.
  • Moser J, Eichler A, Güttinger J, et al. Nanotube mechanical resonators with quality factors of up to 5 million. Nat Nanotechnol. 2014;9:1007–1011.
  • Verbridge SS, Craighead HG, Parpia JM. A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl Phys Lett. 2008;92:13112.
  • Chen C, Lee S, Deshpande VV, et al. Graphene mechanical oscillators with tunable frequency. Nat Nanotechnol. 2013;8:923–927.
  • Ye F, Lee J, Feng PXL. Electrothermally tunable graphene resonators operating at very high temperature up to 1200 K. Nano Lett. 2018;18:1678–1685.
  • Lee J, Krupcale MJ, Feng PXL. Effects of γ-ray radiation on two-dimensional molybdenum disulfide (MoS2) nanomechanical resonators. Appl Phys Lett. 2016;108:23106.
  • Cartamil-Bueno SJ, Steeneken PG, Tichelaar FD, et al. High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2. Nano Res. 2015;8:2842–2849.
  • Si C, Sun Z, Liu F. Strain engineering of graphene: a review. Nanoscale. 2016;8:327–3217.
  • Dai H, Hafner JH, Rinzler AG, et al. Nanotubes as nanoprobes in scanning probe microscopy. Nature. 1996;384:147–150.
  • Kim SH, Mulholland GW, Zachariah MR. Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization. Carbon N Y. 2009;47:1297–1302.
  • Zhang F, Hou P, Liu C, et al. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nat Commun. 2016;7:11160.
  • Poncharal P, Wang ZL, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science. 1999;283:1513–1516.
  • Sazonova V, Yaish Y, Ustunel H, et al. A tunable carbon nanotube electromechanical oscillator. Nature. 2004;431:284–287.
  • Benjamin L, Yury T, Jari K, et al. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science. 2009;325:1107–1110.
  • Bai Y, Yue H, Wang J, et al. Super-durable ultralong carbon nanotubes. Science. 2020;369:1104–1106.
  • Garcia-Sanchez D, San Paulo A, Esplandiu MJ, et al. Mechanical detection of carbon nanotube resonator vibrations. Phys Rev Lett. 2007;99:85501.
  • de Bonis SL, Urgell C, Yang W, et al. Ultrasensitive displacement noise measurement of carbon nanotube mechanical resonators. Nano Lett. 2018;18:5324–5328.
  • Levi R, Garel J, Teich D, et al. Nanotube electromechanics beyond carbon: The case of WS2. ACS Nano. 2015;9:12224–12232.
  • Kumar M, Bhaskaran H. Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems. Nano Lett. 2015;15:2562–2567.
  • Ning ZY, Shi TW, Fu MQ, et al. Transversally and axially tunable carbon nanotube resonators In situ fabricated and studied inside a scanning electron microscope. Nano Lett. 2014;14:1221–1227.
  • Laird EA, Pei F, Tang W, et al. A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 2012;12:193–197.
  • Steele GA, Hüttel AK, Witkamp B, et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science. 2009;325:1103–1107.
  • Barton RA, Ilic B, van der Zande AM, et al. High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Lett. 2011;11:1232–1236.
  • Eichler A, Moser J, Chaste J, et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat Nanotechnol. 2011;6:339–342.
  • Naik A, Buu O, LaHaye MD, et al. Cooling a nanomechanical resonator with quantum back-action. Nature. 2006;443:193–196.
  • Urgell C, Yang W, De Bonis SL, et al. Cooling and self-oscillation in a nanotube electromechanical resonator. Nat Phys. 2019;16:32–37.
  • Deng G, Zhu D, Wang X, et al. Strongly coupled nanotube electromechanical resonators. Nano Lett. 2016;16:5456–5462.
  • Chen C, Rosenblatt S, Bolotin KI, et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol. 2009;4:861–867.
  • Bunch JS, van der Zande AM, Verbridge SS, et al. Electromechanical resonators from graphene sheets. Science. 2007;315:490–493.
  • Zhang X, Makles K, Colombier L, et al. Dynamically-enhanced strain in atomically thin resonators. Nat Commun. 2020;11:5526.
  • Keşkekler A, Shoshani O, Lee M, et al. Tuning nonlinear damping in graphene nanoresonators by parametric–direct internal resonance. Nat Commun. 2021;12:1099.
  • Singh V, Sengupta S, Solanki HS, et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology. 2010;21:165204.
  • Verbiest GJ, Kirchhof JN, Sonntag J, et al. Detecting ultrasound vibrations with graphene resonators. Nano Lett. 2018;18:5132–5137.
  • Davidovikj D, Poot M, Cartamil-Bueno SJ, et al. On-chip heaters for tension tuning of graphene nanodrums. Nano Lett. 2018;18:2852–2858.
  • Chaste J, Eichler A, Moser J, et al. A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol. 2012;7:301–304.
  • Jung M, Rickhaus P, Zihlmann S, et al. GHz nanomechanical resonator in an ultraclean suspended graphene p-n junction. Nanoscale. 2019;11:4355–4361.
  • Robinson JT, Zalalutdinov M, Baldwin JW, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 2008;8:3441–3445.
  • Zalalutdinov MK, Robinson JT, Junkermeier CE, et al. Engineering graphene mechanical systems. Nano Lett. 2012;12:4212–4218.
  • Su Z, Ying Y, Song X, et al. Tunable parametric amplification of a graphene nanomechanical resonator in the nonlinear regime. Nanotechnology. 2021;32:155203.
  • Singh R, Sarkar A, Guria C, et al. Giant tunable mechanical nonlinearity in graphene–silicon nitride hybrid resonator. Nano Lett. 2020;20:4659–4666.
  • Verbiest GJ, Goldsche M, Sonntag J, et al. Tunable coupling of two mechanical resonators by a graphene membrane. 2D Mater. 2021;8:035039.
  • Miller D, Blaikie A, Alemán BJ. Nonvolatile rewritable frequency tuning of a nanoelectromechanical resonator using photoinduced doping. Nano Lett. 2020;20:2378–2386.
  • Lee J, Wang Z, He K, et al. Air damping of atomically thin MoS2 nanomechanical resonators. Appl Phys Lett. 2014;105:23104.
  • Chitara B, Ya'Akobovitz A. Tunable wide-bandwidth resonators based on layered gallium sulfide. Part Part Syst Char. 2019;36:1800460.
  • Wang Z, Yang R, Feng PXL. Thermal hysteresis controlled reconfigurable MoS2 nanomechanical resonators. Nanoscale. 2021;13:18089–18095.
  • Xie H, Jiang S, Rhodes DA, et al. Tunable exciton-optomechanical coupling in suspended monolayer MoSe2. Nano Lett. 2021;21:2538–2543.
  • Wang X, Lan S. Optical properties of black phosphorus. Adv Opt Photonics. 2016;8:618.
  • Wei Q, Peng X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl Phys Lett. 2014;104:251915.
  • Shi S, Hu R, Wu E, et al. Highly-sensitive gas sensor based on two-dimensional material field effect transistor. Nanotechnology. 2018;29:435502.
  • Wang Z, Jia H, Zheng X, et al. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. Nanoscale. 2015;7:877–884.
  • Castellanos-Gomez A, Wojtaszek M, Tombros N, et al. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small. 2011;7:465–468.
  • Wang Z, Lee J, Feng PXL. Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators. Nat Commun. 2014;5:515.
  • Zheng X, Lee J, Feng PXL. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion. Microsyst Nanoeng. 2017;3:17038.
  • Wang Y, Lee J, Zheng X, et al. Hexagonal boron nitride phononic crystal waveguides. ACS Photonics. 2019;6:3225–3232.
  • Wang L, Meric I, Huang PY, et al. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342:614–617.
  • Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5:722–726.
  • Lee CH, Lee GH, van der Zande AM, et al. Atomically thin p-n junctions with van der waals heterointerfaces. Nat Nanotechnol. 2014;9:676–681.
  • Will M, Hamer M, Müller M, et al. High quality factor graphene-based Two-dimensional heterostructure mechanical resonator. Nano Lett. 2017;17:5950–5955.
  • Güttinger J, Noury A, Weber P, et al. Energy-dependent path of dissipation in nanomechanical resonators. Nat Nanotechnol. 2017;12:631–636.
  • Dienwiebel M, Verhoeven GS, Pradeep N, et al. Superlubricity of graphite. Phys Rev Lett. 2004;92:126101.
  • Leven I, Krepel D, Shemesh O, et al. Robust superlubricity in graphene/h-BN heterojunctions. J Phys Chem Lett. 2013;4:115–120.
  • Alden JS, Tsen AW, Huang PY, et al. Strain solitons and topological defects in bilayer graphene. Proc Natl Acad Sci USA. 2013;110:11256–11260.
  • Benameur MM, Gargiulo F, Manzeli S, et al. Electromechanical oscillations in bilayer graphene. Nat Commun. 2015;6:8582.
  • Ye F, Lee J, Feng PXL. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators. Nanoscale. 2017;9:18208–18215.
  • Kim S, Yu J, van der Zande AM. Nano-electromechanical drumhead resonators from two-dimensional material bimorphs. Nano Lett. 2018;18:6686–6695.
  • Arash B, Jiang J, Rabczuk T. A review on nanomechanical resonators and their applications in sensors and molecular transportation. appl. Phys Rev. 2015;2:21301.
  • Zhang Z, Wu Y, Sang L, et al. Coupling of magneto-strictive FeGa film with single-crystal diamond MEMS resonator for high-reliability magnetic sensing at high temperatures. Mater Res Lett. 2020;8:180–186.
  • Ilic B, Yang Y, Aubin K, et al. Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 2005;5:925–929.
  • Eom K, Yang J, Park J, et al. Experimental and computational characterization of biological liquid crystals: A review of single-molecule bioassays. Int J Mol Sci. 2009;10:4009–4032.
  • Chiu H, Hung P, Postma HWC, et al. Atomic-Scale mass sensing using carbon nanotube resonators. Nano Lett. 2008;8:4342–4346.
  • Lee H, Yang Y, Chang W. Mass detection using a graphene-based nanomechanical resonator. Jpn J Appl Phys. 2013;52:25101.
  • Natsuki T, Shi J, Ni Q. Vibration analysis of nanomechanical mass sensor using double-layered graphene sheets resonators. J Appl Phys. 2013;114:094307.
  • Roy SK, Sauer VTK, Westwood-Bachman JN, et al. Improving mechanical sensor performance through larger damping. Science. 2018;360:eaar5220.
  • Moser J, Guttinger J, Eichler A, et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nanotechnol. 2013;8:493–496.
  • Jiang S, Gong X, Guo X, et al. Potential application of graphene nanomechanical resonator as pressure sensor. Solid State Commun. 2014;193:30–33.
  • Song P, Si C, Zhang M, et al. A novel piezoresistive MEMS pressure sensors based on temporary bonding technology. Sensors. 2020;20:337.
  • Anđelić N, Car Z, Čanađija M. NEMS resonators for detection of chemical warfare agents based on graphene sheet. Math Probl Eng. 2019;2019:1–23.
  • Yu C, Liu Q, He Z, et al. Epitaxial graphene gas sensors on SiC substrate with high sensitivity. J Semicond. 2020;41:032101.
  • Naik AK, Hanay MS, Hiebert WK, et al. Towards single-molecule nanomechanical mass spectrometry. Nat Nanotechnol. 2009;4:445–450.
  • Waggoner PS, Varshney M, Craighead HG. Detection of prostate specific antigen with nanomechanical resonators. Lab Chip. 2009;9:3095.
  • Johnson BN, Mutharasan R. Biosensing using dynamic-mode cantilever sensors: A review. Biosens Bioelectron. 2012;32:1–18.
  • Jensen K, Kim K, Zettl A. An atomic-resolution nanomechanical mass sensor. Nat Nanotechnol. 2008;3:533–537.
  • Knobel RG. Weighing single atoms with a nanotube. Nat Nanotechnol. 2008;3:525–526.
  • Wu Y, Joshi N, Zhao S, et al. NO2 gas sensors based on CVD tungsten diselenide monolayer. Appl Surf Sci. 2020;529:147110.
  • Joshi N, Braunger ML, Shimizu FM, et al. In: Kumar Tuteja S, Arora D, Dilbaghi N, Lichtfouse E, editor. Nanosensors for environmental applications. Cham: Springer International Publishing; 2020.
  • Wang Y, Yeow JTW. A review of carbon nanotubes-based gas sensors. J Sens. 2009;2009:1–24.
  • Late DJ, Huang Y, Liu B, et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano. 2013;7:4879–4891.
  • Donarelli M, Ottaviano L, Giancaterini L, et al. Exfoliated black phosphorus gas sensing properties at room temperature. 2D Mater. 2016;3:25002.
  • Blaikie A, Miller D, Alemán BJ. A fast and sensitive room-temperature graphene nanomechanical bolometer. Nat Commun. 2019;10:4726.
  • Xu Y, Chen C, Deshpande VV, et al. Radio frequency electrical transduction of graphene mechanical resonators. Appl Phys Lett. 2010;97:243111.
  • Dolleman RJ, Belardinelli P, Houri S, et al. High-Frequency stochastic switching of graphene resonators near room temperature. Nano Lett. 2019;19:1282–1288.
  • Zhu H, Wang Y, Xiao J, et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat Nanotechnol. 2015;10:151–155.
  • Wu W, Wang L, Li Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature. 2014;514:470–474.
  • Oeckinghaus T, Momenzadeh SA, Scheiger P, et al. Spin-phonon interfaces in coupled nanomechanical cantilevers. Nano Lett. 2020;20:463–469.
  • Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev Mod Phys. 2014;86:1391–1452.
  • Benyamini A, Hamo A, Kusminskiy SV, et al. Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators. Nat Phys. 2014;10:151–156.
  • Møller CB, Thomas RA, Vasilakis G, et al. Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature. 2017;547:191–195.
  • Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546:265–269.
  • Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546:270–273.
  • Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol. 2018;13:289–293.
  • Zhang Z, Shang J, Jiang C, et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 2019;19:3138–3142.
  • Bozhko DA, Vasyuchka VI, Chumak AV, et al. Magnon-phonon interactions in magnon spintronics. Low Temp Phys. 2020;46:383–399.
  • Okazaki Y, Mahboob I, Onomitsu K, et al. Dynamical coupling between a nuclear spin ensemble and electromechanical phonons. Nat Commun. 2018;9:2993.
  • Li H, Fong KY, Zhu H, et al. Valley optomechanics in a monolayer semiconductor. Nat Photonics. 2019;13:397–401.
  • Kolkowitz S, Jayich AC, Unterreithmeier QP, et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science. 2012;335:1603–1606.
  • Andreani P, Bevilacqua A. Harmonic oscillators in CMOS—A tutorial overview. IEEE Open J Solid-State Circuits Soc. 2021;1:2–17.
  • Van der Zande AM, Barton RA, Alden JS, et al. Large-scale arrays of single-layer graphene resonators. Nano Lett. 2010;10:4869–4873 .
  • Jia H, Yang R, Nguyen AE, et al. Large-scale arrays of single- and few-layer MoS2 nanomechanical resonators. Nanoscale. 2016;8:10677–10685.
  • Feng XL, White CJ, Hajimiri A, et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat Nanotechnol. 2008;3:342–346.
  • Villanueva LG, Karabalin RB, Matheny MH, et al. A nanoscale parametric feedback oscillator. Nano Lett. 2011;11:5054–5059.
  • Cleland AN, Roukes ML. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl Phys Lett. 1996;69:2653–2655.
  • Sartori AF, Belardinelli P, Dolleman RJ, et al. Inkjet-printed high-Q nanocrystalline diamond resonators. Small. 2019;15:1803774.
  • Arcizet O, Jacques V, Siria A, et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat Phys. 2011;7:879–883.
  • Zhang ZZ, Hu Q, Song XX, et al. A suspended silicon single-hole transistor as an extremely scaled gigahertz nanoelectromechanical beam resonator. Adv Mater. 2020;32:2005625.
  • Yao N, Lordi V. Young’s modulus of single-walled carbon nanotubes. J Appl Phys. 1998;84:1939–1943.
  • Yakobson BI, Brabec CJ, Berhnolc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett. 1996;76:2511–2514.
  • King A, Johnson G, Engelberg D, et al. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science. 2008;321:382–385.
  • Liu F, Ming P, Li J.; Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B. 2007;76:064120.
  • Zhao J, Deng Q, Ly TH, et al. Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping. Nat Commun. 2015;6:8935.
  • Schwierz F. Graphene transistors. Nat Nanotechnol. 2010;5:487–496.
  • Song L, Ci L, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010;10:3209–3215.
  • Kudin KN, Scuseria GE, Yakobson BI. C2f, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B. 2001;64:235406.
  • Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano. 2011;5:9703–9709.
  • Feldman JL. Elastic constants of 2H-MoS2 and 2H-NbSe2 extracted from measured dispersion curves and linear compressibilities. J Phys Chem Solids. 1976;37:1141–1144.
  • Samanta C, Yasasvi Gangavarapu PR, Naik AK. Nonlinear mode coupling and internal resonances in MoS2 nanoelectromechanical system. Appl Phys Lett. 2015;107:173110.
  • Kappera R, Voiry D, Yalcin SE, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater. 2014;13:1128–1134.
  • Liu K, Yan Q, Chen M, et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 2014;14:5097–5103.
  • Zhang X, Dong Q, Li Z, et al. Significant pressure-induced enhancement of photoelectric properties of WS2 in the near-infrared region. Mater Res Lett. 2022;10:547–555.
  • Alharbi A, Shahrjerdi D. Electronic properties of monolayer tungsten disulfide grown by chemical vapor deposition. Appl Phys Lett. 2016;109:193502.
  • Çakır D, Peeters FM, Sevik C. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Appl Phys Lett. 2014;104:203110.
  • Bhattacharyya R, Misra A, Sandeep KC. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energ Convers Manage. 2017;133:1–3.
  • Jones AM, Yu H, Ghimire NJ, et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol. 2013;8:634–638.
  • Ovchinnikov D, Allain A, Huang YS, et al. Electrical transport properties of single-layer WS2. ACS Nano. 2014;8:8174–8181.
  • Zeng F, Zhang W, Tang B. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin Phys B. 2015;24:97103.
  • Lai K, Zhang W, Zhou F, et al. Bending rigidity of transition metal dichalcogenide monolayers from first-principles. J Phy D: Appl Phys. 2016;49:185301.
  • Wilson JA, Yoffe A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys. 1969;18:193–335.
  • Zhang W, Huang Z, Zhang W, et al. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014;7:1731–1737.
  • Keum DH, Cho S, Kim JH, et al. Bandgap opening in few-layered monoclinic MoTe2. Nat Phys. 2015;11:482–486.
  • Chitara B, Ya'Akobovitz A. Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale. 2018;10:13022–13027.
  • Hu P, Wang L, Yoon M, et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013;13:1649–1654.
  • Jiang J, Park HS. Mechanical properties of single-layer black phosphorus. J Phy D: Appl Phys. 2014;47:385304.
  • Zhang HY, Jiang JW. Elastic bending modulus for single-layer black phosphorus. J Phys D: Appl Phys. 2015;48:455305.
  • Qiao J, Kong X, Hu ZX, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun. 2014;5:4475.