710
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Activation energy of diffusion determined from a single in-situ neutron reflectometry experiment

, &
Pages 53-59 | Received 20 Apr 2022, Published online: 20 Sep 2022

References

  • Ahmad S, Alj S, Ullah I, et al. Synthesis and characterization of manganese ferrite from low grade manganese ore through solid state reaction route. Sci. Rep. 2021;11:16190.
  • Mehrer H. ed. Diffusion in solids. fundamentals, methods, materials, diffusion-controlled processes. Berlin Heidelberg: Springer-Verlag GmbH, 2007, vol. 155.
  • Heitjans P, Kärger J. Diffusion in condensed matter. methods, materials, models. Berlin: Springer; 2005.
  • Schmidt H, Geckle U, Bruns M. Simultaneous diffusion of Si and N in silicon nitride. Phys. Rev. B. 2006;74:45203.
  • Hüger E, Dörrer L, Schmidt H. Permeation, solubility, diffusion and segregation of lithium in amorphous silicon layers. Chem. Mater. 2018;30:3254–3264.
  • Strauß F, Hüger E, Julin J, et al. Lithium diffusion in ion-beam sputter-deposited lithium-silicon layers. J Phys Chem C. 2020;124:8616–8623.
  • Dörrer L, Tuchel P, Uxa D, et al. Lithium tracer diffusion in proton-exchanged lithium niobate. Solid State Ionics. 2021;365:115657.
  • Uhlendorf J, Galazka Z, Schmidt H. Oxygen diffusion in beta-Ga2O3 single crystals at high temperatures. Appl. Phys. Lett. 2021;119:242106.
  • Vykhodets VB, Nefedova OA, Obukhov S, et al. Application of the nuclear reaction analysis online technique to study the diffusion of deuterium in metals. Jetp Lett. 2018;107:211–215.
  • Mâaza M, Farnoux B, Samuel F. Study of the hydrogen diffusion in superlattices by grazing angle neutron reflectometry. Phys Lett A. 1993;181:245–250.
  • Cowlam N. Solid state amorphisation in metallic multilayers. Key Eng Mater. 1995;103:125–162. doi:10.4028/www.scientific.net/KEM.103.125.
  • Speakman J, Rose P, Hunt JA, et al. The study of self-diffusion in crystalline and amorphous multilayer samples by neutron reflectometry. J Magn Magn Mater. 1996;156:411–412.
  • Schmidt H, Gupta M, Bruns M. Nitrogen diffusion in amorphous silicon nitride isotope multilayers probed by neutron reflectometry. Phys. Rev. Lett. 2006;96:55901.
  • Gupta M, Gupta A, Chakravarty S, et al. Iron self-diffusion in FeZr/Fe57Zr multilayers measured by neutron reflectometry. Phys. Rev. B. 2006;74:104203.
  • Schmidt H, Gupta M, Gutberlet T, et al. How to measure atomic diffusion processes in the sub-nanometer range. Acta Mater. 2008;56:464–470.
  • Hüger E, Tietze U, Lott D, et al. Self-diffusion in germanium isotope multilayers at low temperatures. Appl. Phys. Lett. 2008;93:162104.
  • Chakravarty S, Schmidt H, Tietze U, et al. Self-diffusion and defect annihilation in nanocrystalline Fe films probed by neutron reflectometry. Phys. Rev. B. 2009;80:014111.
  • Gupta A. X-ray and neutron studies of nanoscale atomic diffusion in thin films and multilayers. Appl Surf Sci. 2009;256:552–557.
  • Hüger E, Schmidt H, Stahn J, et al. Atomic transport in metastable compounds. Phys. Rev. B. 2009;80:220101.
  • Hüger E, Rahn J, Stahn J, et al. Diffusivity determination in bulk materials on nanometric length scales using neutron reflectometry. Phys. Rev. B. 2012;85:214102.
  • Schmidt H, Chakravarty S, Jiang M, et al. Grain boundary self-diffusion in Fe films with a stable nanostructure. J. Mater Sci. 2012;47:4087–4092.
  • Hüger E, Rahn J, Geue T, et al. Lithium diffusion in congruent LiNbO3 single crystals at Low temperatures probed by neutron reflectometry. Phys. Chem. Chem. Phys. 2014;16:3670–3674.
  • Strauß F, Dörrer L, Geue T, et al. Self-Diffusion in amorphous silicon. Phys. Rev. Lett. 2016;116:25901.
  • Singh S, Swain M, Basu S. Kinetics of interface alloy phase formation at nanometer length scale in ultra-thin films: X-ray and polarized neutron reflectometry. Prog Mater Sci. 2018;96:1–50. doi:10.1016/j.pmatsci.2018.03.005 .
  • Vogel G, Hettich G, Mehrer H. Self-diffusion in intrinsic germanium and effects of doping on self-diffusion in germanium. J. Phys. C: Solid State Phys. 1983;16:6197–6204.
  • Browning JF, Seo J, Wenzel JF, et al. A high temperature cell for investigating interfacial structure on the molecular scale in molten salt/alloy systems. Rev. Sci. Instrum. 2021;92:123903.
  • Diethert A, Metwalli E, Meier R, et al. In situ neutron reflectometry study of the near-surface solvent concentration profile during solution casting. Soft Matter. 2011;7:6648–6659.
  • Bucknall DG, Higgins JS, Butler SA. Real-Time neutron reflectivity study of the early stages of diffusion into and dissolution of glassy polymers. Journal of Polymer Science: Part B: Polymer Physics. 2004;42:3267–3281.
  • Yager KG, Tanchak OM, Barrett CJ, et al. Temperature-controlled neutron reflectometry sample cell suitable for study of photoactive thin films. Rev. Sci. Instrum. 2006;77:045106.
  • McEwan JA, Clulow AJ, Nelson A, et al. Dependence of organic interlayer diffusion on glass-transition temperature in OLEDs. ACS Appl Mater Interfaces. 2017;9:14153–14161. doi:10.1021/acsami.7b01450 .
  • Campbell RA. Recent advances in resolving kinetic and dynamic processes at the air/water interface using specular neutron reflectometry. Curr Opin Colloid Interface Sci. 2018;37:49–60. doi:10.1016/j.cocis.2018.06.002 .
  • Skoda MW. Recent developments in the application of X-ray and neutron reflectivity to soft matter systems. Curr Opin Colloid Interface Sci. 2019;42:41–54.
  • Hynes EL, Gutfreund P, Parnell AJ, et al. Liquid–liquid equilibrium in polymer–fullerene mixtures; an in situ neutron reflectivity study. Soft Matter. 2020;16:3727–3739.
  • McEwan JA, Clulow AJ, Nelson A, et al. Diffusion in organic film stacks containing solution-processed phosphorescent poly(dendrimer) dopants. ACS Appl Mater Interfaces. 2021;13:30910–30920. doi:10.1021/acsami.1c05940.
  • Englisch U, Katholy S, Peñacorada F, et al. Investigation of molecular diffusion across organic multilayers using neutron specular reflectivity. Materials Science and Engineering: C. 1999;8-9:99–102.
  • Cooper RJ, Balogh J, Cowlam N, et al. A study of amorphisation in Fe-B multilayers by neutron reflectometry. Materials Science and Engineering. 1997;226-228:90–94.
  • Fritzsche H, Saoudi M, Haagsma J, et al. Neutron reflectometry study of hydrogen desorption in destabilized MgAl alloy thin films. Appl. Phys. Lett. 2008;92:121917. doi:10.1063/1.2899936 .
  • Fritzsche H, Kalisvaart WP, Zahiri B, et al. The catalytic effect of Fe and Cr on hydrogen and deuterium absorption in Mg thin films. Int J Hydrogen Energy. 2012;37:3540–3547.
  • Hüger E, Stahn J, Schmidt H. Neutron reflectometry to measure in-situ Li permeation through ultrathin silicon layers and interfaces. J. Electrochem. Soc. 2015;162:A7104–A7109.
  • Hüger E, Stahn J, Heitjans P, et al. Neutron reflectometry to measure in-situ the rate determining step of lithium Ion transport through thin silicon layers and interfaces. Phys. Chem. Chem. Phys. 2019;21:16444–16450.
  • Hüger E, Strauß F, Stahn J, et al. In-situ measurement of self-atom diffusion in solids using amorphous germanium as a model system. Sci. Rep. 2018;8:17607.
  • Kube R, Bracht H, Hüger E, et al. Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions. Phys. Rev. B. 2013;88:085206.
  • Stahn J, Filges U, Panzner T. Focusing specular neutron reflectometry for small samples. Eur. Phys. J. Appl. Phys. 2012;58:11001.
  • Stahn J, Glavic A. Focusing neutron reflectometry. Nucl Instrum Methods Phys Res Sect A. 2016;821:44–54.
  • Connell G, Temkin RJ, Paul W. Amorphous germanium III. optical properties. Adv Phys. 1973;22:643–665.
  • Edelman F, Komem Y, Bendayan M, et al. On the crystallization of amorphous germanium films. Appl Surf Sci. 1993;70-71:727–730.
  • Radek M, et al. Atomic transport during solid-phase epitaxial recrystallization of amorphous germanium. Appl. Phys. Lett. 2015;107:82112.
  • Fan JCC. Preparation of Sn-doped In2O3 (ITO) films at low deposition temperatures by ion-beam sputtering. Appl. Phys. Lett. 1979;34:515–517.
  • Windischmann H. An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 1987;62:1800–1807.
  • Vossen JL, Kern W. Thin film processes. Cambridge: Academic Press; 1978, p. 194.