1,245
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Fe2C- and Mn2(W/Mo)B4-based rare-earth-free permanent magnets as a result of the high-throughput and data-mining search

, ORCID Icon & ORCID Icon
Pages 76-83 | Received 25 Jul 2022, Published online: 22 Sep 2022

References

  • Skomski R, Coey JMD. Permanent magnetism. Bristol: Institute of Physics Publishing; 1999.
  • Bauer D, Diamond D, Li J, et al. US department of energy: critical materials strategy; 2010.
  • Cui J, Kramer M, Zhou L, et al. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018;158:118–137. Available from: http://www.sciencedirect.com/science/article/pii/S1359645418305858.
  • Sözen HI, Ener S, Maccari F, et al. Ab initio phase stabilities of ce-based hard magnetic materials and comparison with experimental phase diagrams. Phys Rev Materials. 2019;3:084407. Available from: https://link.aps.org/doi/10.1103/PhysRevMaterials.3.084407.
  • Pandey T, Parker DS. Potential high-performance magnet: Fe- and Zr-alloyed ce 2co 17. Phys Rev Appl. 2020;13:034039. Available from: https://link.aps.org/doi/10.1103/PhysRevApplied.13.034039.
  • Gilad Kusne A, Gao T, Mehta A, et al. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnet. Sci Rep. 2014;4:6367.
  • Gabay A, Hadjipanayis G, Cui J. New anisotropic MNBI permanent magnets by field-annealing of compacted melt-spun alloys modified with Mg and Sb. J Magn Magn Mater. 2020;495:165860. Available from: http://www.sciencedirect.com/science/article/pii/S0304885319322632.
  • Fang H, Kontos S, Ångström J, et al. Directly obtained τ-phase MNAL, a high performance magnetic material for permanent magnets. J Solid State Chem. 2016;237:300–306. Available from: http://www.sciencedirect.com/science/article/pii/S0022459616300548.
  • Tian L, Gutfleisch O, Eriksson O. Alloying effect on the order–disorder transformation in tetragonal feni. Sci Rep. 2021;11:5253. https://doi.org/10.1038/s41598-021-84482-53.
  • Takanashi K, Mizuguchi M, Kojima T, et al. Fabrication and characterization of l1 0-ordered feni thin films. J Phys D: Appl Phys. 2017;50(48):483002. https://doi.org/10.1088/1361-6463/aa8ff6.
  • Lottini E, López-Ortega A, Bertoni G, et al. Strongly exchange coupled core-shell nanoparticles with high magnetic anisotropy: a strategy toward rare-earth-free permanent magnets. Chem Mater. 2016;28(12):4214.
  • Balamurugan B, Das B, Shah VR, et al. Assembly of uniaxially aligned rare-earth-free nanomagnets. Appl Phys Lett. 2012;101:122407.
  • Mohapatra J, Xing M, Elkins J, et al. Extraordinary magnetic hardening in nanowire assemblies: the geometry and proximity effects. Adv Funct Mater. 2021;31(13):2010157.
  • Gao TR, Wu YQ, Fackler S, et al. Combinatorial exploration of rare-earth-free permanent magnets: magnetic and microstructural properties of Fe-Co-W thin films. Appl Phys Lett. 2013;102:022419.
  • Kuz'min MD, Skokov KP, Jian H, et al. Towards high-performance permanent magnets without rare earths. J Phys: Condensed Matter. 2014;26(6):064205.
  • Lebègue S, Björkman T, Klintenberg M, et al. Two-dimensional materials from data filtering and ab initio calculations. Phys Rev X. 2013;3:031002. Available from: https://link.aps.org/doi/10.1103/PhysRevX.3.031002.
  • Eriksson O. Searching for materials with reduced dimension. Nature Nanotech. 2017;13:180. https://doi.org/10.1038/s41565-017-0060-4.
  • Romdhane FB, Cretu O, Debbichi L, et al. Quasi-2d Cu 2s crystals on graphene: in-situ growth and ab-initio calculations. Small. 2015;11(11):1253–1257. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201400444.
  • Lin MW, Zhuang HL, Yan J, et al. Ultrathin nanosheets of crsite 3: a semiconducting two-dimensional ferromagnetic material. J Mater Chem C. 2016;4:315–322. https://doi.org/10.1039/C5TC03463A.
  • Nieves P, Arapan S, Maudes-Raedo J, et al. Database of novel magnetic materials for high-performance permanent magnet development. Comput Materials Sci. 2019;168:188–202. Available from: https://www.sciencedirect.com/science/article/pii/S0927025619303489.
  • Vishina A, Vekilova OY, Björkman T, et al. High-throughput and data-mining approach to predict new rare-earth free permanent magnets. Phys Rev B. 2020 Mar;101:094407. Available from: https://link.aps.org/doi/10.1103/PhysRevB.101.094407.
  • Vishina A, Hedlund D, Shtender V, et al. Data-driven design of a new class of rare-earth free permanent magnets. Acta Mater. 2021;212:116913. Available from: https://www.sciencedirect.com/science/article/pii/S1359645421002937.
  • Wills JM, Cooper BR. Synthesis of band and model hamiltonian theory for hybridizing cerium systems. Phys Rev B. 1987;36:3809.
  • Wills JM, Alouani M, Andersson P, et al. Full-potential electronic structure method. Berlin: Springer; 2010. (Springer Series in Solid State Science).
  • Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B. 1994;49:16223.
  • Jepson O, Anderson O. The electronic structure of h.c.p. ytterbium. Solid State Commun. 1971;9(20):1763–1767. Available from: https://www.sciencedirect.com/science/article/pii/0038109871903139.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–5192.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47:558.
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci. 1996;6:15–50.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.
  • Eriksson O, Bergman A, Bergqvist L, et al. Atomistic spin dynamics: foundations and applications. Oxford: Oxford University Press; 2017.
  • Kvashnin YO, Grånäs O, Di Marco I, et al. Exchange parameters of strongly correlated materials: extraction from spin-polarized density functional theory plus dynamical mean-field theory. Phys Rev B. 2015;91:125133. Available from: https://link.aps.org/doi/10.1103/PhysRevB.91.125133.
  • Liechtenstein AI, Katsnelson MI, Gubanov VA. Exchange interactions and spin-wave stiffness in ferromagnetic metals. J Phys F: Metal Phys. 1984;14(7):L125–L128. https://doi.org/10.1088/0305-4608/14/7/007.
  • Szilva A, Kvashnin Y, Stepanov EA, et al. Quantitative theory of magnetic interactions in solids, 2022. Available from: https://arxiv.org/abs/2206.02415.
  • Ebert H, Ködderitzsch D, Minár J. Calculating condensed matter properties using the kkr-green's function method–recent developments and applications. Rep Progress Phys. 2011;74(9):096501. Available from: http://stacks.iop.org/0034-4885/74/i=9/a=096501.
  • Wang X, Wu R, Wang DS, et al. Torque method for the theoretical determination of magnetocrystalline anisotropy. Phys Rev B. 1996 Jul;54:61–64. Available from: https://link.aps.org/doi/10.1103/PhysRevB.54.61.
  • Soven P. Coherent-potential model of substitutional disordered alloys. Phys Rev. 1967;156:809–813. Available from: https://link.aps.org/doi/10.1103/PhysRev.156.809.
  • Stocks GM, Temmerman WM, Gyorffy BL. Complete solution of the Korringa–Kohn–Rostoker coherent-potential-approximation equations: Cu-Ni alloys. Phys Rev Lett. 1978;41:339–343. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.41.339.
  • Anderson PW. Theory of magnetic exchange interactions: exchange in insulators and semiconductors. In: Seitz F, Turnbull, editors. Solid state physics. New York (NY): Academic Press; 1963.
  • Ganose A, Jackson A, Scanlon D. Command-line tools for plotting and analysis of periodic ab initio calculations. J Open Source Softw. 2018;3(28):717.
  • Momma K, Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011 Dec;44(6):1272–1276. https://doi.org/10.1107/S0021889811038970.
  • Inorganic crystal structure database. Available from: http://www2.fiz-karlsruhe.de/icsd_home.html; 2021.
  • Faraoun HI, Zhang YD, Esling C, et al. Crystalline, electronic, and magnetic structures of θ-fe 3c, χ-fe 5c 2, and η-fe 2c from first principle calculation. J Appl Phys. 2006;99(9):093508. https://doi.org/10.1063/1.2194118.
  • Lv Z, Sun S, Jiang P, et al. First-principles study on the structural stability, electronic and magnetic properties of fe 2c. Comput Mater Sci. 2008;42(4):692–697. Available from: https://www.sciencedirect.com/science/article/pii/S0927025607003084.
  • Yin L, Juneja R, Lindsay L, et al. Semihard iron-based permanent-magnet materials. Phys Rev Appl. 2021;15:024012. Available from: https://link.aps.org/doi/10.1103/PhysRevApplied.15.024012.
  • Edström A, Werwiński M, Iuşan D, et al. Magnetic properties of (Fe1−xCox)2B alloys and the effect of doping by 5d elements. Phys Rev B. 2015;92:174413. Available from: https://link.aps.org/doi/10.1103/PhysRevB.92.174413.
  • Bhandary S, Grånäs O, Szunyogh L, et al. Route towards finding large magnetic anisotropy in nanocomposites: application to a W 1−xRe x/Fe multilayer. Phys Rev B. 2011;84:092401. Available from: https://link.aps.org/doi/10.1103/PhysRevB.84.092401.
  • Hirotsu Y, Nagakura S. Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering. Acta Metallurgica. 1972;20(4):645–655. Available from: https://www.sciencedirect.com/science/article/pii/000161607290020X.
  • Königer A, Hammerl C, Zeitler M, et al. Formation of metastable iron carbide phases after high-fluence carbon ion implantation into iron at low temperatures. Phys Rev B. 1997;55:8143–8147. Available from: https://link.aps.org/doi/10.1103/PhysRevB.55.8143.
  • Buschow KHJ, van Engen PG, Jongebreur R. Magneto-optical properties of metallic ferromagnetic materials. J Magn Magn Mater. 1983;38(1):1–22. Available from: https://www.sciencedirect.com/science/article/pii/0304885383900975.
  • Iga A, Tawara Y. Magnetic properties of molybdenum- and wolfram-modified mn3b4. J Phys Soc Japan. 1968;24(1):28–35. https://doi.org/10.1143/JPSJ.24.28.
  • Hinuma Y, Hatakeyama T, Kumagai Y, et al. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat Commun. 2016;7:11962.
  • Wu Y, Lazic P, Hautier G, et al. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ Sci. 2013;6:157–168.
  • Tawara Y, Iga A, Yanase A. Ferro- and antiferromagnetism in (Mn 1−xCr x) 3B 4. J Phys Soc Japan. 1966;21(3):476–479. https://doi.org/10.1143/JPSJ.21.476.