1,737
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Super-high formability of Al-5.0Zn-1.5Mg-1.5Cu (wt.%) alloy via gradient heterogeneous structure

, , , &
Pages 99-107 | Received 04 Jul 2022, Published online: 29 Sep 2022

References

  • Maeno T, Mori K, Yachi R. Hot stamping of high-strength aluminium alloy aircraft parts using quick heating. CIRP Ann. 2017;66:269–272.
  • Hu JL, Wu XJ, Bo H. Dislocation density model and microstructure of 7A85 aluminum alloy during thermal deformation. J Cent South Univ. 2021;28:2999–3007.
  • Zheng KL, Politis DJ, Wang LL, et al. A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. Int J Lightweight Mater Manuf. 2018;1:55–80.
  • Wang H, Luo YB, Friedman P, et al. Warm forming behavior of high strength aluminum alloy AA7075. Trans Nonferrous Met Soc China. 2012;22:0–7.
  • Tisza M, Czinege I. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int J Lightweight Mater Manuf. 2018;1:229–238.
  • Benedyk JC. Mater Des Manuf Lightweight Veh. Woodhead Publishing Limit; 2010; 79–113.
  • Wu XL, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111:7197–7201.
  • Oliaei M, Jamaati R. Improvement of the strength-ductility-toughness balance in interstitial-free steel by gradient microstructure. Mater Sci Eng A. 2022;845:143237.
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9(1):1–31.
  • Yuan LL, Guo MX, Habraken AM, et al. Extremely improved formability of Al-Zn-Mg-Cu alloys via micro-domain heterogeneous structure. Mater Sci Eng A. 2022;837:142737.
  • Xiong ZF, Jiang Y, Yang M, et al. Achieving superior strength and ductility in 7075 aluminum alloy through the design of multi-gradient nanostructure by ultrasonic surface rolling and aging. J Alloys Compd. 2022;165669.
  • Yuan LL, Guo MX, Liu ZY, et al. Enhanced stiffness of Al-Zn-Mg-Cu alloys via heterogeneous structure of soft and hard microdomains. Mater Sci Eng A. 2022;841:143028.
  • Pan T, Ysa B, Hja B, et al. Effect of Zn content on the microstructure and mechanical properties of as-cast Al-Zn-Mg-Cu alloy with medium Zn content. J Mater Res Technol. 2022;18:2620–2630.
  • Bae JW, Moon J, Jang MJ. Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy. Mater Sci Eng A. 2017;20:323–331.
  • Shukla S, Wang TH, Cotton S. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scr Mater. 2018;156:105–109.
  • Wang YM, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 2004;52:1699–1709.
  • Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20:323–331.
  • Wu XL, Yang MX, Yuan FP. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112:14501–14505.
  • He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016;102:187–196.
  • Zhang W, Ma ZC, Zhao HW, et al. Refinement strengthening, second phase strengthening and spinodal microstructure-induced strength-ductility trade-off in a high-entropy alloy. Mater Sci Eng A. 2022;847:143343.
  • Wu XL, Zhu YT. Gradient and lamellar heterostructures for superior mechanical properties. MRS Bull. 2021;46(3):244–249.
  • Fan J, Zhu L, Lu J, et al. Theory of designing the gradient microstructured metals for overcoming strength-ductility trade-off. Scr Mater. 2020;184:41–45.
  • Yuan LL, Guo MX, Habraken AM, et al. Extremely improved formability of Al-Zn-Mg-Cu alloys via micro-domain heterogeneous structure. Mater Sci Eng A. 2022;837:142737.
  • Yuan LL, Guo MX, Zhang JS, et al. Synergy in hybrid multi-scale particles for the improved formability of Al-Zn-Mg-Cu alloys. J Mater Res Technol. 2021;10:1143–1157.
  • Shabadi R, Suwas S, Kumar S, et al. Texture and formability studies on AA7020 Al alloy sheets. Mater Sci Eng A. 2012;558:439–445.
  • Jeon JG, Shin JH, Shin SE, et al. Improvement in the anisotropic mechanical properties and formability of Al–Si–Mg–Cu-based alloy sheets. Mater Sci Eng A. 2021;799:140199.
  • Dong GJ, Zhao CC, Peng YX, et al. Hot granules medium pressure forming process of AA7075 conical parts. Chin J Mech Eng. 2015;28(3):580–591.
  • Wang XF, Guo MX, Chapuis A, et al. Effect of solution time on microstructure, texture and mechanical properties of Al–Mg–Si–Cu alloys. Mater Sci Eng A. 2015;644:137–151.
  • Chen Y, Clausen AH, Hopperstad OS, et al. Stress–strain behaviour of aluminium alloys at a wide range of strain rates. Int J Solids Struct. 2009;46(21):3825–3835.
  • Reyes A, Hopperstad OS, Lademo OG, et al. Modeling of textured aluminum alloys used in a bumper system: material tests and characterization. Comput Mater Sci. 2006;37(3):246–268.
  • Tajally M, Emadoddin E. Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets. Mater Des. 2011;32(3):1594–1599.
  • Wang XF, Liu H, Tang XB. A comparison study of microstructure, texture and mechanical properties between two 6xxx aluminum alloys. Metall Res Technol. 2021;118:211.
  • Huang J, Jiang YG, Jiang FQ, et al. The improved mechanical anisotropy of a commercial Al–Cu–Mg–Mn–Si (2017) aluminum alloy by cross rolling. Adv Eng Mater. 2022;24(3):2100831.
  • Sidor J, Petrov R H, Kestens L AI. Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets. Mater Sci Eng A. 2010;528(1):413–424.
  • Wu XL, Yang MX, Li RG, et al. Plastic accommodation during tensile deformation of gradient structure. Sci China Mater. 2021;64(6):1534–1544.
  • Wu X, Zhu Y, Lu K. Ductility and strain hardening in gradient and lamellar structured materials. Scr Mater. 2020;186:321–325.
  • Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2(4):185–191.
  • Fang XT, Li ZK, Wang YF, et al. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures. J Mater Sci Technol. 2022;98:244–247.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151.