1,581
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Understanding mechanism of performance improvement in nitrogen-doped niobium superconducting radio frequency cavity

, , , , , & show all
Pages 108-116 | Received 27 Jul 2022, Published online: 29 Sep 2022

References

  • Kneisel P. Radio-frequency superconductivity technology: Its sensitivity to surface conditions. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 1993;11:1575–1583.
  • Dhakal P. Superconducting Radio Frequency Resonators for Quantum Computing: A Short Review. J Nep Phys Soc. 2021;7:1–5.
  • Trenikhina Y, Romanenko A, Kwon J, et al. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy. J Appl Phys. 2015;117:154507.
  • Turneaure JP, Weissman I. Microwave Surface Resistance of Superconducting Niobium. J Appl Phys. 1968;39:4417–4427.
  • Halbritter J, Kneisel P, Palmieri V, et al. Electric surface resistance RE(T, f, E⊥) of Nb/Nb2O5-y-interfaces and Q-drop of superconducting Nb cavities. IEEE Trans Appl Supercond. 2001;11:1864–1868.
  • Barkov F, Romanenko A, Trenikhina Y, et al. Precipitation of hydrides in high purity niobium after different treatments. J Appl Phys. 2013;114:164904.
  • Romanenko A, Barkov F, Cooley LD, et al. Proximity breakdown of hydrides in superconducting niobium cavities. Supercond Sci Technol. 2013;26:035003.
  • Halbritter J. On the oxidation and on the superconductivity of niobium. Appl Phys A. 1987;43:1–28.
  • Kim Y-J, Tao R, Klie RF, et al. Direct Atomic-Scale Imaging of Hydrogen and Oxygen Interstitials in Pure Niobium Using Atom-Probe Tomography and Aberration-Corrected Scanning Transmission Electron Microscopy. ACS Nano. 2013;7:732–739.
  • Delheusy M, Stierle A, Kasper N, et al. X-ray investigation of subsurface interstitial oxygen at Nb/oxide interfaces. Appl Phys Lett. 2008;92:101911.
  • Verjauw J, Potočnik A, Mongillo M, et al. Investigation of Microwave Loss Induced by Oxide Regrowth in High- Q Niobium Resonators. Phys Rev Applied. 2021;16:014018.
  • Tao R, Todorovic R, Liu J, et al. Electron energy-loss spectroscopy study of metallic Nb and Nb oxides. J Appl Phys. 2011;110:124313.
  • Nico C, Monteiro T, Graça MPF. Niobium oxides and niobates physical properties: Review and prospects. Prog Mater Sci. 2016;80:1–37.
  • Cava RJ, Batlogg B, Krajewski JJ, et al. Electrical and magnetic properties of Nb2 O5 − δ crystallographic shear structures. Phys Rev B. 1991;44:6973–6981.
  • Proslier T, Zasadzinski JF, Cooley L, et al. Tunneling study of cavity grade Nb: Possible magnetic scattering at the surface. Appl Phys Lett. 2008;92:212505.
  • Romanenko A, Pilipenko R, Zorzetti S, et al. Three-Dimensional Superconducting Resonators at T < 20 mK with Photon Lifetimes up to τ = 2 s. Phys Rev Applied. 2020;13:034032.
  • Antoine CZ, Berry S.. H in Niobium: origin and method of detection. In: AIP Conference Proceedings. Vol. 671. Virginia (USA): American Institute of Physics; July 2003. p. 176–189.
  • Barkov F, Romanenko A, Grassellino A. Direct observation of hydrides formation in cavity-grade niobium. Phys Rev ST Accel Beams. 2012;15:122001.
  • Knobloch J. The “Q disease” in superconducting niobium RF cavities. In: AIP Conference Proceedings. Vol. 671. Virginia (USA): American Institute of Physics; July 2003. p. 133–150..
  • Ciovati G. Effect of low-temperature baking on the radio-frequency properties of niobium superconducting cavities for particle accelerators. J Appl Phys. 2004;96:1591–1600.
  • Saito K, Noguchi S, Ono M, et al. Superiority of electropolishing over chemical polishing on high gradients. Part Accel. 1998;60:193–217.
  • Cooper CA, Cooley LD. Mirror-smooth surfaces and repair of defects in superconducting RF cavities by mechanical polishing. Supercond Sci Technol. 2013;26:015011.
  • Romanenko A, Grassellino A. Dependence of the microwave surface resistance of superconducting niobium on the magnitude of the rf field. Appl Phys Lett. 2013;102:252603.
  • Dhakal P. Nitrogen doping and infusion in SRF cavities: A review. Physics Open. 2020;5:100034.
  • Grassellino A, Romanenko A, Sergatskov D, et al. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures. Supercond Sci Technol. 2013;26:102001.
  • Grassellino A, Romanenko A, Trenikhina Y, et al. Unprecedented quality factors at accelerating gradients up to 45 MVm −1 in niobium superconducting resonators via low temperature nitrogen infusion. Supercond Sci Technol. 2017;30:094004.
  • Reece CE, Palczewski AD, Xiao B. An analysis of the temperature and field dependence of the RF surface resistance of nitrogen-doped niobium SRF cavities with respect to existing theoretical models (No. JLAB-ACC-15-2050; DOE/OR/23177-3353). Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA, USA; 2015.
  • Martinello M, Bice DJ, Boffo C, et al. Q-factor optimization for high-beta 650 MHz cavities for PIP-II. J Appl Phys. 2021;130:174501.
  • Martinello M, Checchin M, Romanenko A, et al. Field-Enhanced Superconductivity in High-Frequency Niobium Accelerating Cavities. Phys Rev Lett. 2018;121:224801.
  • Garg P, Balachandran S, Adlakha I, et al. Revealing the role of nitrogen on hydride nucleation and stability in pure niobium using first-principles calculations. Supercond Sci Technol. 2018;31:115007.
  • Ford DC, Cooley LD, Seidman DN. Suppression of hydride precipitates in niobium superconducting radio-frequency cavities. Supercond Sci Technol. 2013;26:105003.
  • Schubert U, Metzger H, Peisl J. Diffuse X-ray scattering from interstitial nitrogen in niobium. I. Huang diffuse scattering. J Phys F: Met Phys. 1984;14:2457–2466.
  • Oh J, Cha H, Kim T, et al. Low angle boundary migration of shot-peened pure nickel investigated by electron channeling contrast imaging and electron backscatter diffraction. Microsc Res Tech. 2019;82:849–855.
  • Wright SI, Nowell MM, Field DP. A Review of Strain Analysis Using Electron Backscatter Diffraction. Microsc Microanal. 2011;17:316–329.
  • Bourke MAM, Rangaswamy P, Holden TM, et al. Complementary X-ray and neutron strain measurements of a carburized surface. Mater Sci Eng A. 1998;257:333–340.
  • Palaniradja K, Alagumurthi N, Soundararajan V. Residual Stresses in Case Hardened Materials. TOMSJ. 2010;4:92–102.
  • Liu G, Yu JC, Lu G(, et al. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun. 2011;47:6763.
  • Arfaoui I, Cousty J, Guillot C. A model of the NbOx≈1 nanocrystals tiling a Nb(110) surface annealed in UHV. Surf Sci. 2004;557:119–128.
  • Uehara Y, Fujita T, Iwami M, et al. Single NbO nano-crystal formation on low temperature annealed Nb(001) surface. Surf Sci. 2001;472:59–62.
  • Koch CC, Scarbrough JO, Kroeger DM. Effects of interstitial oxygen on the superconductivity of niobium. Phys Rev B. 1974;9:888–897.
  • Kirchheim R. Metals as sinks and barriers for interstitial diffusion with examples for oxygen diffusion in copper, niobium and tantalum. Acta Metall. 1979;27:869–878.
  • Findlay SD, Shibata N, Sawada H, et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy. 2010;110:903–923.
  • Leapman RD, Hunt JA. Comparison of detection limits for EELS and EDXS. Microsc Microanal Microstruct. 1991;2:231–244.
  • Bach D. (2009). EELS investigations of stoichiometric niobium oxides and niobium-based capacitors. Available from: https://publikationen.bibliothek.kit.edu/1000012945.
  • Shao X, Nilius N, Myrach P, et al. Strain-induced formation of ultrathin mixed-oxide films. Phys Rev B. 2011;83:245407.
  • Akbashev AR, Plokhikh AV, Barbash D, et al. Crystallization engineering as a route to epitaxial strain control. APL Mater. 2015;3:106102.
  • Yan Z, Hu Y, Song K, et al. Vickers-indentation-induced crystallization in a metallic glass. Appl Phys Lett. 2015;106:101909.
  • Wang L, Bei H, Gao YF, et al. Effect of residual stresses on the hardness of bulk metallic glasses. Acta Mater. 2011;59:2858–2864.
  • Ahn S, Park S-Y, Kim Y-C, et al. Surface residual stress in soda-lime glass evaluated using instrumented spherical indentation testing. J Mater Sci. 2015;50:7752–7759.
  • Van Leeuwen HP. The kinetics of hydrogen embrittlement: A quantitative diffusion model. Eng Fract Mech. 1974;6:141–161.
  • Toribio J, Elices M. Influence of residual stresses on hydrogen embrittlement susceptibility of prestressing steels. Int J Solids Struct. 1991;28:791–803.
  • Lazarus D. Diffusion in Crystalline and Amorphous Solids. MRS Proc. 1985;57:297.
  • Makenas BJ, Birnbaum HK. Phase changes in the niobium-hydrogen system—II. low temperature hydride phase transitions. Acta Metall. 1982;30:469–481.
  • Pfeiffer G, Wipf H. The trapping of hydrogen in niobium by nitrogen interstitials. J Phys F: Met Phys. 1976;6:167–179.
  • Makenas BJ, Birnbaum HK. Phase changes in the niobium-hydrogen system I: Accommodation effects during hydride precipitation. Acta Metall. 1980;28:979–988.