1,901
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

Deformation incompatibility enables hetero-deformation induced strengthening in Ti/Nb laminates

, , , &
Pages 126-133 | Received 29 Jun 2022, Published online: 03 Oct 2022

References

  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112(47):14501–14505. DOI:10.1073/pnas.1517193112.
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532. DOI:10.1080/21663831.2017.1343208.
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9(1):1–31. DOI:10.1080/21663831.2020.1796836.
  • Yu YS, Hu B, Gao ML, et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel. Int J Miner Metall Mater. 2021;28:816–825. DOI:10.1007/s12613-020-2235-5.
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331(6024):1587–1590. DOI:10.1126/science.1200177.
  • Wei Y, Li Y, Zhu L, et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5:3580. DOI:10.1038/ncomms4580.
  • Wu XL, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111(20):7197–7201. DOI:10.1073/pnas.1324069111.
  • Cheng Z, Zhou H, Lu Q, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362:6414. DOI:10.1126/science.aau1925.
  • Wang YF, Huang CX, Wang MS, et al. Quantifying the synergetic strengthening in gradient material. Scripta Mater. 2018;150:22–25. DOI:10.1016/j.scriptamat.2018.02.039.
  • Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915. DOI:10.1038/nature01133.
  • Liu YF, Cao Y, Mao QZ, et al. Critical microstructures and defects in heterostructured materials and their effects on mechanical properties. Acta Mater. 2020;189:129–144. DOI:10.1016/j.actamat.2020.03.001.
  • Beyerlein IJ, Mayeur JR, Zheng S, et al. Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci USA. 2014;111(12):4386–4390. DOI:10.1073/pnas.1319436111.
  • Ma XL, Huang CX, Xu WZ, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scripta Mater. 2015;103:57–60. DOI:10.1016/j.scriptamat.2015.03.006.
  • Huang CX, Wang YF, Ma XL, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater Today. 2018;21(7):713–719. DOI:10.1016/j.mattod.2018.03.006.
  • Wang YF, Yang MX, Ma XL, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates. Mater Sci Eng A. 2018;727:113–118. DOI:10.1016/j.msea.2018.04.107.
  • Li J, Cao Y, Gao B, et al. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J Mater Sci. 2018;53(14):10442–10456. DOI:10.1007/s10853-018-2322-4.
  • Sawangrat C, Kato S, Orlov D, et al. Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders. J Mater Sci. 2014;49(19):6579–6585. DOI:10.1007/s10853-014-8258-4.
  • Park HK, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress. Mater Res Lett. 2018;6(5):261–267. DOI:10.1080/21663831.2018.1439115.
  • Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7(10):393–398. DOI:10.1080/21663831.2019.1616331.
  • Fang XT, He GZ, Zheng C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Mater. 2020;186:644–655. DOI:10.1016/j.actamat.2020.01.037.
  • Wu X, Yang M, Li R, et al. Plastic accommodation during tensile deformation of gradient structure. Sci China Mater. 2021;64:1534–1544. DOI:10.1007/s40843-020-1545-2.
  • Estrin Y, Beygelzimer Y, Kulagin R, et al. Architecturing materials at mesoscale: some current trends. Mater Res Lett. 2021;9(10):399–421. DOI:10.1080/21663831.2021.1961908.
  • Huang M, Xu C, Fan GH, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite. Acta Mater. 2018;153:235–249. DOI:10.1016/j.actamat.2018.05.005.
  • Wan T, Cheng Z, Bu L, et al. Work hardening discrepancy designing to strengthening gradient nanotwinned Cu. Scripta Mater. 2021;201:113975. DOI:10.1016/j.scriptamat.2021.113975.
  • Jiang S, Peng Lin R, Hegedűs Z, et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation. Acta Mater. 2021;205:116546. DOI:10.1016/j.actamat.2020.116546.
  • Wang Y, Wei Y, Zhao Z, et al. Mechanical response of the constrained nanostructured layer in heterogeneous laminate. Scripta Mater. 2022;207:114310. DOI:10.1016/j.scriptamat.2021.114310.
  • Magagnosc DJ, Field DM, Meredith CS, et al. Superior strength and ductility in a low density duplex steel studied by in situ neutron diffraction. Mater Sci Eng A. 2021;799:140252. DOI:10.1016/j.msea.2020.140252.
  • Jia N, Peng Lin R, Wang YD, et al. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation. Acta Mater. 2006;54(15):3907–3916. DOI:10.1016/j.actamat.2006.04.019.
  • Jia N, Peng Lin R, Wang YD, et al. Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling. Acta Mater. 2008;56(4):782–793. DOI:10.1016/j.actamat.2007.10.040.
  • Cui YM, Li CH, Zhang CS, et al. Effect of initial microstructure on the micromechanical behavior of Ti-55531 titanium alloy investigated by in-situ high-energy X-ray diffraction. Mater Sci Eng A. 2020;772:138806. DOI:10.1016/j.msea.2019.138806.
  • Wang Y, Huang C, Li Z, et al. Shear band stability and uniform elongation of gradient structured material: role of lateral constraint. Extreme Mech Lett. 2020;37:100686. DOI:10.1016/j.eml.2020.100686.
  • Kim HY, Hashimoto S, Kim JI, et al. Mechanical properties and shape memory behavior of Ti-Nb alloys. Mater Trans. 2004;45(7):2443–2448. DOI:10.2320/matertrans.45.2443.
  • Johansson J, Odén M, Zeng XH. Evolution of the residual stress state in a duplex stainless steel during loading. Acta Mater. 1999;47(9):2669–2684. DOI:10.1016/S1359-6454(99)00149-4.
  • Niendorf T, Canadinc D, Maier HJ, et al. Microstructure–mechanical property relationships in ultrafine-grained NbZr. Acta Mater. 2007;55(19):6596–6605. DOI:10.1016/j.actamat.2007.08.015.
  • Ovid'ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540. DOI:10.1016/j.pmatsci.2018.02.002.
  • Zhu YT, Wu XL. Ductility and plasticity of nanostructured metals: differences and issues. Mater Today Nano. 2018;2:15–20. DOI:10.1016/j.mtnano.2018.09.004.
  • Wang YF, Wang MS, Fang XT, et al. Extra strengthening in a coarse/ultrafine grained laminate: role of gradient interfaces. Int J Plast. 2019;123:196–207. DOI:10.1016/j.ijplas.2019.07.019.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151. DOI:10.1080/21663831.2016.1153004.
  • Zhao J, Zaiser M, Lu X, et al. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities. Int J Plast. 2021;145:103063. DOI:10.1016/j.ijplas.2021.103063.