1,903
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Simultaneously enhanced strength and ductility in graphene nanosheet/Al-Cu-Mg nano-laminated composites by incorporating coarse domains

, , , , , & show all
Pages 143-151 | Received 22 Jul 2022, Published online: 08 Oct 2022

References

  • Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75–127.
  • Kinloch IA, Suhr J, LouJun L, et al. Composites with carbon nanotubes and graphene: An outlook. Science. 2018;362:547–553.
  • Shin SE, Choi HJ, Shin JH, et al. Strengthening behavior of few-layered graphene/aluminum composites. Carbon N Y. 2015;82:143–151.
  • Jiang Y, Tan Z, Xu R, et al. Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling. Compos A Appl Sci Manuf. 2018;111:73–82.
  • Shin SE, Bae DH. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos A Appl Sci Manuf. 2015;78:42–47.
  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2020;9(1):1–31.
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532.
  • Li Z, Guo Q, Li Z, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 2015;15(12):8077–8083.
  • Zhang Y, Bioinspired LX. Graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett. 2017;17(11):6907–6915.
  • Xu R, Tan Z, Fan G, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Compos A Appl Sci Manuf. 2018;111:1–11.
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015 Nov 24;112(47):14501–14505.
  • Yang M, Yan D, Yuan F, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc Natl Acad Sci USA. 2018;115(28):7224–7229.
  • Fu X, Tan Z, Min X, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying. Mater Res Lett. 2020;9(1):50–57.
  • International AIHCJA. Properties and selection: nonferrous alloys and special-purpose materials. 1992;2:1143–1144.
  • Liu X, Li J, Sha J, et al. In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites. Mater Sci Eng A. 2018;709:65–71.
  • Khoshghadam-Pireyousefan M, Rahmanifard R, Orovcik L, et al. Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: synthesis, microstructure, and mechanical properties. Mater Sci Eng A. 2020;772:138820.
  • Zhang ZW, Liu ZY, Xiao BL, et al. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing. Carbon N Y. 2018;135:215–223.
  • Zheng Z, Zhang X, Li J, et al. Achieving homogeneous distribution of high-content graphene in aluminum alloys via high-temperature cumulative shear deformation. Mater Des. 2020;193:108796.
  • Ranjan R, Singh NK, Jaiswal AP, et al. Metal matrix nano composites using graphene nano platelets indented on copper particles in aluminium matrix. Adv Mater Lett. 2018;9(09):652–655.
  • El-Ghazaly A, Anis G, Salem HG. Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Compos A Appl Sci Manuf. 2017;95:325–336.
  • Yan SJ, Dai SL, Zhang XY, et al. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A. 2014;612:440–444.
  • Li P, Chen L, Cao B, et al. Hierarchical microstructure architecture: A roadmap towards strengthening and toughening reduced graphene oxide/2024Al matrix composites synthesized by flake powder thixoforming. J Alloys Compd. 2020;823:153815.
  • Liu ZY, Wang LH, Zan YN, et al. Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding. Compos B Eng. 2020;199:108268.
  • Han T, Wang F, Li J, et al. Effect of GNPs on microstructures and mechanical properties of GNPs/Al-Cu composites with different heat treatment status. J Mater Sci Technol. 2021;92:1–10.
  • Zheng Z, Zhang X, Qian M, et al. Ultra-high strength GNP/2024Al composite via thermomechanical treatment. J Mater Sci Technol. 2022;108:164–172.
  • Pu B, Zhang X, Chen X, et al. Exceptional mechanical properties of aluminum matrix composites with heterogeneous structure induced by in-situ graphene nanosheet-Cu hybrids. Compos B Eng. 2022;234:109731.
  • Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–155.
  • Hu T, Ma K, Topping TD, et al. Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 2013;61(6):2163–2178.
  • Yuan SP, Liu G, Wang RH, et al. Coupling effect of multiple precipitates on the ductile fracture of aged Al–Mg–Si alloys. Scr Mater. 2007;57(9):865–868.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151.
  • Gao YH, Cao LF, Yang C, et al. Co-stabilization of θ′-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al–Cu alloy with enhanced creep resistance. Mater Today Nano. 2019;6:100035.
  • Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater. 2016;119:68–79.
  • Zhang Z, Li Z, Tan Z, et al. Bioinspired hierarchical Al2O3/Al laminated composite fabricated by flake powder metallurgy. Compos A Appl Sci Manuf. 2021;140:106187.