995
Views
1
CrossRef citations to date
0
Altmetric
Original Reports

Macro-gradient structures generated in Ti(C, N)-based cermets with supersaturated WC: an experimental and thermodynamic investigation

, , , , , , , & show all
Pages 152-158 | Received 21 Jun 2022, Published online: 10 Oct 2022

References

  • Lou M, Chen X, Xu K, et al. Temperature-induced wear transition in ceramic-metal composites. Acta Mater. 2021;205:116545.
  • Park S, Kang S. Toughened ultra-fine (Ti,W)(CN)-Ni cermets. Scripta Mater. 2005;52(2):129–133.
  • Ettmayer P, Kolaska H, Lengauer W, et al. Ti(C,N) cermets—metallurgy and properties. Int J Refract Met Hard Mater. 1995;13:343–351.
  • Lengauer W, Scagnetto F. Ti(C,N)-based cermets: critical review of achievements and recent developments. Solid State Phenom. 2018;274:53–100.
  • Zheng Z, Lv J, Lou M, et al. Mechanical and tribological properties of WC incorporated Ti(C, N)-based cermets. Ceram Int. 2022;48:10086–10095.
  • Lindahl P, Gustafson P, Rolander U, et al. Microstructure of model cermets with high Mo or W content. Int J Refract Met Hard Mater. 1999;17:411–421.
  • Jung J, Kang S. Effect of ultra-fine powders on the microstructure of Ti(CN)-xWC-Ni cermets. Acta Mater. 2004;52:1379–1386.
  • Li Y, Liu N, Zhang X, et al. Effect of WC content on the microstructure and mechanical properties of (Ti,W)(C, N)-Co cermets. Int J Refract Met Hard Mater. 2008;26:33–40.
  • Kim S, Zuo J, Kang S. Effect of WC or NbC addition on lattice parameter of surrounding structure in Ti(C0.7,N0.3)-Ni cermets investigated by TEM/CBED. J Eur Ceram Soc. 2010;30:2131–2138.
  • Ahn SY, Kang S. Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process. J Am Ceram Soc. 2010;83:1489–1494.
  • Lou M, Xu K, Chen L, et al. Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation. J Mater Inform. 2021;1:5.
  • Qin Z, Wang Z, Wang Y, et al. Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning. Mater Res Lett. 2021;9:32–40.
  • Jagetia A, Nartu M, Dasari S, et al. Ordering-mediated local nano-clustering results in unusually large Hall-Petch strengthening coefficients in high entropy alloys. Mater Res Lett. 2021;9:213–222.
  • Chen L, Zhang Z, Lou M, et al. High-temperature wear mechanisms of TiNbWN films: role of nanocrystalline oxides formation. Friction. 2022: 1–13. DOI:10.1007/s40544-022-0621-x.
  • Peng Y, Zhou P, Du Y, et al. Thermodynamic evaluation of the C-Ta-Ti system and extrapolation to the C-Ta-Ti-N system. Int J Refract Met Hard Mater. 2013;40:36–42.
  • Peng Y, Du Y, Zhou P, et al. CSUTDCC1—A thermodynamic database for multicomponent cemented carbides. Int J Refract Met Hard Mater. 2014;42:57–70.
  • Park C, Nam S, Kang S. Carbide/binder interfaces in Ti(C,N)-(Ti,W)C/(Ti,W)(C,N)-based cermets. J Alloys Compd. 2016;657:671–677.
  • Xiong H, Wu Y, Li Z, et al. Comparison of Ti(C, N)-based cermets by vacuum and gas-pressure sintering: microstructure and mechanical properties. Ceram Int. 2018;44:805–813.
  • Liu N, Yin W, Zhu L. Effect of TiC/TiN powder size on microstructure and properties of Ti(CN)-based Cermets. Mater Sci Eng A. 2007;445–446:707–716.
  • Glühmann J, Schneeweiß M, Van Den Berg H, et al. Functionally graded WC-Ti(C,N)-(Ta,Nb)C-Co hardmetals: metallurgy and performance. Int J Refract Met Hard Mater. 2013;36:38–45.
  • Janisch DS, Lengauer W, Eder A, et al. Nitridation sintering of WC-Ti(C,N)-(Ta,Nb)C-Co hardmetals. Int J Refract Met Hard Mater. 2013;36:22–30.
  • Lengauer W. Diffusional control of the near-surface microstructure in functional gradient hardmetals. Materialwiss Werkstofftech. 2005;36:460–466.
  • Lengauer W, Dreyer K. Tailoring hardness and toughness gradients in functional gradient hardmetals (FGHMs). Int J Refract Met Hard Mater. 2006;24:155–161.
  • Chen L, Lengauer W, Ettmayer P, et al. Fundamentals of liquid phase sintering for modern cermets and functionally graded cemented carbonitrides (FGCC). Int J Refract Met Hard Mater. 2000;18:307–322.
  • Li N, Wang Q, Zhang W, et al. Development of multilayer graded cemented carbides with Ti-Zr carbonitride miscibility gaps. Ceram. Int. 2021;47:7521–7527.
  • Zhang W, Du Y, Peng Y, et al. Experimental investigation and simulation of the effect of Ti and N contents on the formation of fcc-free surface layers in WC-Ti(C,N)-Co cemented carbides. Int J Refract Met Hard Mater. 2013;41:638–647.
  • Zhang W, Peng Y, Zhou P, et al. Experimental investigation and computer simulation of gradient zone formation in WC-Ti(C,N)-TaC-NbC-Co cemented carbides. J Phase Equilib Diffus. 2013;34:202–210.
  • Li N, Li X, Zhang W, et al. Relation between the nitrogen gas pressure and structure characteristics of WC-Ti(C, N)-Co graded cemented carbides. J Alloys Compd. 2020;831:154764.
  • Zhang W, Du Y, Zhou P, et al. A new type of double-layer gradient cemented carbides: preparation and microstructure characterization. Scripta Mater. 2016;123:73–76.
  • Garcia J. Influence of Fe-Ni-Co binder composition on nitridation of cemented carbides. Int J Refract Met Hard Mater. 2012;30:114–120.
  • Xiong H, Li Z, Gan X, et al. Morphology evolution of TiC-based cermets via different sintering schedules. Ceram Int. 2017;43:5805–5812.
  • Nie J, Wu Y, Li P, et al. Morphological evolution of TiC from octahedron to cube induced by elemental nickel. CrystEngComm. 2012;14:2213–2221.