1,322
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Realizing recrystallization-stabilization temperature range inversion in high Mg content Al alloys via pulsed electric current

, , , &
Pages 179-186 | Received 11 Jul 2022, Published online: 19 Oct 2022

References

  • Ding Y, Gao K, Huang H, et al. Nucleation and evolution of β phase and corresponding intergranular corrosion transition at 100–230°C in 5083 alloy containing Er and Zr. Mater Des. 2019;174:107778.
  • Kramer L, Phillippi M, Tack WT, et al. Locally reversing sensitization in 5xxx aluminum plate. J Mater Eng Perform. 2012;21(6):1025–1029.
  • Nikulin I, Kipelova A, Malopheyev S, et al. Effect of second phase particles on grain refinement during equal-channel angular pressing of an Al-Mg-Mn alloy. Acta Mater. 2012;60(2):487–497.
  • Li X, Xia W, Chen J, et al. Bimodal-structured Al-Mg alloy with high strength and ductility processed by high strain rate rolling at medium temperature. Met Mater-Int. 2021;27(12):5191–5198.
  • Nagarajan S, Gurao NP, Parameswaran V. On the kinetics of texture development in Al-Mg alloy under high strain rate tension. Mater Charact. 2020;163:110303.
  • Dix Jr EH, Anderson WA, Shumaker MB. Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion. Corrosion. 1959;15(2):19–26.
  • D’Antuono DS, Gaies J, Golumbfskie W, et al. Grain boundary misorientation dependence of β phase precipitation in an Al-Mg alloy. Scr Mater. 2014;76:81–84.
  • Steiner MA, Agnew SR. Modeling sensitization of Al-Mg alloys via β-phase precipitation kinetics. Scr Mater. 2015;102:55–58.
  • Yang YK, Allen T. Direct visualization of β phase causing intergranular forms of corrosion in Al-Mg alloys. Mater Charact. 2013;80:76–85.
  • Zhang R, Steiner MA, Agnew SR, et al. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep. 2017;7(1):1–14.
  • Oguocha INA, Adigun OJ, Yannacopoulos S. Effect of sensitization heat treatment on properties of Al-Mg alloy AA5083-H116. J Mater Sci. 2008;43(12):4208–4214.
  • Ding Y, Gao K, Xiong X, et al. High corrosion resistance and strain hardening of high Mg Al-alloy with Er and Zr by using a new reverse stabilization process. Scr Mater. 2019;171:26–30.
  • Ding Y, Wu X, Gao K, et al. The influence of stabilization treatment on long-term corrosion resistance and microstructure in Er and Zr containing 5083 aluminum alloy. Mater Charact. 2020;161:110143.
  • Wang Z, Lin X, Kang N, et al. Directed energy deposition additive manufacturing of a Sc/Zr-modified Al-Mg alloy: effect of thermal history on microstructural evolution and mechanical properties. Mater Sci Eng A. 2021;802:140606.
  • Zhao Y, Polyakov MN, Mecklenburg M, et al. The role of grain boundary plane orientation in the β phase precipitation of an Al–Mg alloy. Scr Mater. 2014;89:49–52.
  • Li X, Xia W, Yan H, et al. Enhancing the intergranular corrosion resistance of high Mg-alloyed Al–Mg alloy by Y addition. Mater Corros. 2020;71(11):1802–1811.
  • Wang Y, Gupta RK, Sukiman NL, et al. Influence of alloyed Nd content on the corrosion of an Al-5Mg alloy. Corros Sci. 2013;73:181–187.
  • Zhang P, Xia W, Yan H, et al. Mechanical properties, corrosion behavior, and microstructure of Sr modified Al-9.2Mg-0.7Mn alloys. Mater Corros. 2019;70(10):1798–1807.
  • Sukiman NL, Gupta RK, Buchheit RG, et al. Influence of microalloying additions on Al-Mg alloy. Part 1: corrosion and electrochemical response. Corros Eng Sci Technol. 2014;49(4):254–262.
  • Sukiman NL, Gupta RK, Zhang R, et al. Influence of microalloying additions on Al-Mg alloy. Part 2: phase analysis and sensitisation behaviour. Corros Eng Sci Technol. 2014;49(4):263–268.
  • Goswami R, Qadri SB. Suppression of Samson phase formation in Al-Mg alloys by boron addition. Mater Lett. 2017;200:21–23.
  • Meng C, Zhang D, Cui H, et al. Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al-Mg alloys. J Alloys Compd. 2014;617:925–932.
  • Meng C, Zhang D, Zhuang L, et al. Correlations between stress corrosion cracking, grain boundary precipitates and Zn content of Al-Mg-Zn alloys. J Alloys Compd. 2016;655:178–187.
  • Tan L, Allen TR. Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci. 2010;52(2):548–554.
  • Halap A, Radetić T, Popović M, et al. Influence of the thermomechanical treatment on the intergranular corrosion susceptibility of Zn-modified Al-5.1 Wt Pct Mg-0.7 Wt Pct Mn alloy sheet. Metall Mater Trans A. 2014;45(10):4572–4579.
  • Reck BK, Graedel TE. Challenges in metal recycling. Science. 2012;337(6095):690–695.
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1(5):1–13.
  • Li X, Lu K. Playing with defects in metals. Nat Mater. 2017;16(7):700–701.
  • Liao X, Zhai Q, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum. Acta Mater. 2007;55(9):3103–3109.
  • Sheng Y, Hua Y, Wang X, et al. Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties. Materials (Basel). 2018;11(2):185.
  • Conrad H. Electroplasticity in metals and ceramics. Mater Sci Eng A. 2000;287(2):276–287.
  • Yu T, Deng D, Wang G, et al. Crack healing in SUS304 stainless steel by electropulsing treatment. J Clean Prod. 2016;113:989–994.
  • Youssef KMS, Koch CC, Fedkiw PS. Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corros Sci. 2004;46(1):51–64.
  • Liu X, Zhang D, Wang H, et al. Regulating solute partitioning utilized to decorate grain boundary for improving corrosion resistance in a model Al-Cu-Mg alloy. Corros Sci. 2021;181:109219.
  • Krishnaswamy H, Kim MJ, Hong ST, et al. Electroplastic behaviour in an aluminium alloy and dislocation density based modelling. Mater Des. 2017;124:131–142.
  • Kapoor R, Sunil S, Reddy GB, et al. Electric current induced precipitation in maraging steel. Scr Mater. 2018;154:16–19.
  • Zhang D, Zhang Z, Pan Y, et al. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy. J Mater Sci Technol. 2020;53:132–139.
  • Basaran C, Lin M. Damage mechanics of electromigration induced failure. Mech Mater. 2008;40(1-2):66–79.
  • Asoka-Kumar P, O’brien K, Lynn KG, et al. Detection of current-induced vacancies in thin aluminum-copper lines using positrons. Appl Phys Lett. 1996;68(3):406–408.
  • Huntington HB, Grone AR. Current-induced marker motion in gold wires. J Phys Chem Solids. 1961;20(1-2):76–87.
  • Waryoba D, Islam Z, Wang B, et al. Low temperature annealing of metals with electrical wind force effects. J Mater Sci Technol. 2019;35(4):465–472.
  • Huang Y, Humphreys FJ. Measurements of subgrain growth in a single-phase aluminum alloy by high-resolution EBSD. Mater Charact. 2001;47(3-4):235–240.
  • Yan J, Heckman NM, Velasco L, et al. Ultrastructural characterization of the lower motor system in a mouse model of krabbe disease. Sci Rep. 2016;6(1):1–10.
  • Zhao X, Li S, Yan F, et al. Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion process and heat treatment. Materials (Basel). 2019;12(24):4223.
  • Mohtadi-Bonab MA, Eskandari M, Szpunar JA. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking. Mater Sci Eng A. 2015;620:97–106.
  • Jin W, Fan J, Zhang H, et al. Microstructure, mechanical properties and static recrystallization behavior of the rolled ZK60 magnesium alloy sheets processed by electropulsing treatment. J Alloy Compd. 2015;646:1–9.
  • Shahri SMG, Idris MH, Jafari H, et al. Effect of solution treatment on corrosion characteristics of biodegradable Mg-6Zn alloy. Trans Nonferrous Met Soc China. 2015;25(5):1490–1499.
  • Dekker JP, Lodder A, Van Ek J. Theory for the electromigration wind force in dilute alloys. Phys Rev B. 1997;56(19):12167.
  • Goswami R, Spanos G, Pao PS, et al. Precipitation behavior of the ß phase in Al-5083. Mater Sci Eng A. 2010;527(4-5):1089–1095.