4,893
Views
12
CrossRef citations to date
0
Altmetric
Original Reports

High strength and high ductility achieved in a heterogeneous lamella-structured magnesium alloy

, , , , , , & show all
Pages 187-195 | Received 04 Jul 2022, Published online: 20 Oct 2022

References

  • Yan Z, Yu Y, Qian J, et al. Fabrication of high-strength Mg–Gd–Nd–Zn–Sn–Zr alloy via extrusion and aging. Met Mater Int. 2021;27:4182–4194.
  • Diqing W, Houbin W, Jiajun H, et al. Effect of the secondary phase on mechanical and damping properties of Mg–Zn–Y–Si alloy. Met Mater Int. 2021;27:838–842.
  • Jian WW, Cheng GM, Xu WZ, et al. Ultrastrong Mg alloy via nano-spaced stacking faults. Mater Res Lett. 2013;1:61–66.
  • Zhao X, Li SC, Zheng YS, et al. The microstructure evolution, texture weakening mechanism and mechanical properties of AZ80 Mg alloy processed by repetitive upsetting-extrusion with reduced deformation temperature. J Alloy Compd. 2021;883:160871.
  • Tang LL, Zhao YH, Islamgaliev RK, et al. Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP. Mater Sci Eng A. 2016;670:280–291.
  • Kim WJ, Hong SI, Kim YH. Enhancement of the strain hardening ability in ultrafine grained Mg alloys with high strength. Scr Mater. 2012;67:689–692.
  • Kim WJ, Park JD, Kim WY. Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy. J Alloy Compd. 2008;460:289–293.
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532.
  • Wu X, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. PNAS. 2014;111:7197–7201.
  • Chen L, Yuan F, Jiang P, et al. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation. Mater Sci Eng A. 2017;694:98–109.
  • Meng X, Duan M, Luo L, et al. The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment. Mater Sci Eng A. 2017;707:636–646.
  • Ning J, Xu B, Sun M, et al. Strain hardening and tensile behaviors of gradient structure Mg alloys with different orientation relationships. Mater Sci Eng A. 2018;735:275–287.
  • Wei XX, Jin L, Wang FH, et al. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates. J Mater Sci Technol. 2020;44:19–23.
  • Zhang H, Wang HY, Wang JG, et al. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys. J Alloy Compd. 2019;780:312–317.
  • Oh-ishi K, Mendis CL, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4 Zn-0.1 Ag-0.1 Ca-0.16 Zr (at.%) alloys. Acta Mater. 2009;57:5593–5604.
  • Wang H-Y, Yu Z-P, Zhang L, et al. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process. Sci Rep. 2015;5:17100.
  • Zhang Y, Rong W, Wu YJ, et al. Achieving ultra-high strength in Mg-Gd-Ag-Zr wrought alloy via bimodal-grained structure and enhanced precipitation. J Mater Sci Technol. 2020;54:160–170.
  • Peng P, Tang AT, She J, et al. Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure. Mater Sci Eng A. 2021;803:140569.
  • Park SH, Kim SH, Kim YM, et al. Improving mechanical properties of extruded Mg-Al alloy with a bimodal grain structure through alloying addition. J Alloy Compd. 2015;646:932–936.
  • Cubides Y, Karayan AI, Vaughan MW, et al. Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: the role of bimodal grain structure and beta-Mg17Al12 precipitates. Materialia. 2020;13:100840.
  • Li YK, Zha M, Jia HL, et al. Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles. J Magnes Alloy. 2021;9:1556–1566.
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151.
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. PNAS. 2015;112:14501–14505.
  • Pérez-Prado MT, Del Valle JA, Ruano OA. Achieving high strength in commercial Mg cast alloys through large strain rolling. Mater Lett. 2005;59:3299–3303.
  • Pérez-Prado MT, Valle D, Ruano OA. Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scr Mater. 2004;51:1093–1097.
  • Khani S, Aboutalebi MR, Salehi MT, et al. Microstructural development during equal channel angular pressing of as-cast AZ91 alloy. Mater Sci Eng A. 2016;678:44–56.
  • Máthis K, Gubicza J, Nam NH. Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing. J Alloy Compd. 2005;394:194–199.
  • Yang Z, Ma A, Liu H, et al. Managing strength and ductility in AZ91 magnesium alloy through ECAP combined with prior and post aging treatment. Mater Charact. 2019;152:213–222.
  • Kim S-H, Lee JU, Kim YJ, et al. Improvement in extrudability and mechanical properties of AZ91 alloy through extrusion with artificial cooling. Mater Sci Eng A. 2017;703:1–8.
  • Kim YJ, Kim YM, Hong SG, et al. Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91-0.3Ca-0.2Y alloys. J Mater Sci Technol. 2021;93:41–52.
  • Liu SS, Zhang BX, Liu H, et al. Achieving strength-ductility synergy of AZ91 extruded sheet by balancing dual-heterostructure of grain size and precipitates. Mater Sci Eng A. 2021;827:141989.
  • Huang XS, Suzuki K, Saito N. Microstructure and mechanical properties of AZ80 magnesium alloy sheet processed by differential speed rolling. Mater Sci Eng A. 2009;508:226–233.
  • Zeng ZR, Zhu YM, Liu RL, et al. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation. Acta Mater. 2018;160:97–108.
  • Kim WJ, Lee YG, Lee MJ, et al. Exceptionally high strength in Mg-3Al-1Zn alloy processed by high-ratio differential speed rolling. Scr Mater. 2011;65:1105–1108.
  • Mehranpour MS, Heydarinia A, Emamy M, et al. Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation. Mater Sci Eng A. 2021;802:140667.
  • Azghandi SHM, Weiss M, Arhatari BD, et al. A rationale for the influence of grain size on failure of magnesium alloy AZ31: An in situ X-ray microtomography study. Acta Mater. 2020;200:619–631.
  • Bouaziz O, Kim HS, Lee J, et al. Bauschinger effect or kinematic hardening: bridging microstructure and continuum mechanics. Met Mater Int. 2022. doi:10.1007/s12540-022-01227-3
  • Mermin ND. The topological theory of defects in ordered media. Rev Mod Phys. 1979;51:591–648.
  • Li JL, Wu D, Chen RS, et al. Anomalous effects of strain rate on the room-temperature ductility of a cast Mg-Gd-Y-Zr alloy. Acta Mater. 2018;159:31–45.
  • Park HK, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress. Mater Res Lett. 2018;6:261–267.
  • Kim WJ, Jeong HG, Jeong HT. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scr Mater. 2009;61:1040–1043.
  • Wang J, Niu L, Zhang Y, et al. Is Mg17Al12 ductile or brittle? A theoretical insight. J Magnes Alloy. 2021. doi:10.1016/j.jma.2021.06.006.
  • Ko KK, Bae HJ, Park EH, et al. A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47%. J Mater Sci Technol. 2022;117:225–237.
  • Liu BY, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations. Science. 2019;365:73–75.
  • Liu S, Xia D, Yang H, et al. Mechanical properties and deformation mechanism in Mg-Gd alloy laminate with dual-heterostructure grain size and texture. Int J Plasticity. 2022;157:103371.