1,557
Views
2
CrossRef citations to date
0
Altmetric
Original Reports

An ultrastrong niobium alloy enabled by refractory carbide and eutectic structure

, , & ORCID Icon
Pages 169-178 | Received 01 Aug 2022, Published online: 19 Oct 2022

References

  • Wei W, Wang H, Zou C, et al. Microstructure and oxidation behavior of Nb-based multi-phase alloys. Mater Des. 2013;46:1–7.
  • Tanaka R, Kasama A, Fujikura M, et al. Research and development of niobium-based superalloys for hot components of gas turbines. Miner Met Mater Soc. 2004;2:89–98.
  • Vishwanadh B, Vaibhav K, Jha SK, et al. Development of Nb-1%Zr-0.1%C alloy as structural components for high temperature reactors. J Nucl Mater. 2012;427:350–358.
  • Sha J, Hirai H, Tabaru T, et al. Effect of carbon on microstructure and high-temperature strength of Nb-Mo-Ti-Si in situ composites prepared by arc-melting and directional solidification. Mater Sci Eng A. 2003;343:282–289.
  • Chan KS. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites. Mater Sci Eng A. 2002;329-331:513–522.
  • Tan Y, Tanaka H, Ma C, et al. Solid-Solution strengthening and high-temperature compressive strength of Nb-X alloys (X=Ta, V, Mo and W). J Jpn Inst Met. 2000;64:559–565.
  • Ning X. Composition and properties of niobium alloys from Russia and USA(III). Rare Metals Lett. 2002;9:22–23.
  • Ding R, Jones IP, Jiao H. Effect of carbon on the microstructures and mechanical properties of as cast Nb-base alloy. Mater Sci Eng A. 2008;485:92–98.
  • Senkov ON, Rao SI, Butler TM, et al. Ductile Nb alloys with reduced density and cost. J Alloys Compd. 2019;808:151685.
  • Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J Alloys Compd. 2017;694:869–876.
  • Wu S, Qiao D, Zhang H, et al. Microstructure and mechanical properties of C Hf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures. J Mater Sci Technol. 2022;97:229–238.
  • Soboyejo WO, Ye F, Dipasquale J, et al. An investigation of the fatigue and fracture behavior of multicomponent Nb-11Al-41Ti-1.5Mo-1.5Cr intermetallic. J Mater Sci. 1999;34:3567–3575.
  • Kim WY, Tanaka H, Kasama A, et al. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites. Intermetallics. 2001;9:827–834.
  • Sha J, Hirai H, Ueno H, et al. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures. Metall Mater Trans A. 2003;34:85–94.
  • Sha J, Hirai H, Tabaru T, et al. Effect of W addition on compressive strength of Nb-10Mo-10Ti-18Si-base in-situ composites. Mater Trans JIM. 2000;41:1125–1128.
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706.
  • Sergi A, Khan RHU, Georgilas K, et al. Powder HIP of pure Nb and C-103 alloy: The influence of powder characteristics on mechanical properties. Int J Refract Met Hard Mater. 2022;104:105803.
  • Soejima Y, Heima A, Akamine H, et al. Comparison of in situ SEM and TEM observations of thermoelastic martensitic transformation in Ti-Ni shape memory alloy. Mater Trans. 2020;61:2107–2114.
  • Tabaru T, Hanada S. High temperature strength of Nb3Al-base alloys. Intermetallics. 1998;6:735–739.
  • Wei Q, Luo G, Tu R, et al. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite. J Mater Sci Technol. 2021;84:1–9.
  • Wei Q, Xu X, Shen Q, et al. Metal-carbide eutectics with multiprincipal elements make superrefractory alloys. Sci Adv. 2022;8:eabo2068.
  • Wojcik CC. High-temperature niobium alloys. Adv Mater Process. 1998;154:27–30.
  • Guo NN, Wang L, Luo LS, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater Des. 2015;81:87–94.
  • Senkov ON, Woodward CF. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater Sci Eng A. 2011;529:311–320.
  • Senkov ON, Scott JM, Senkova SV, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci. 2012;47:4062–4074.
  • Juan CC, Tsai MH, Tsai CW, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics. 2015;62:76–83.
  • Senkov ON, Senkova SV, Miracle DB, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Mater Sci Eng A. 2013;565:51–62.
  • Balluffi RW, Allen S, Carter WC. Kinetics of materials. Hoboken: John Wiley & Sons; 2005.
  • Lin LY, Courtney TH. Direct observations of lamellar fault migration in the Pb-Sn eutectic. Metall Mater Trans B. 1974;5:513–514.
  • Yeh JW. Recent progress in high-entropy alloys. Eur J Control. 2006;31:633–648.
  • Ng C, Guo S, Luan J, et al. Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics. 2012;31:165–172.
  • Bramfitt BL. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall Trans. 1970;1:1987–1995.
  • Li LL, Su YQ, Beyerlein IJ, et al. Achieving room-temperature brittle-to-ductile transition in ultrafine layered Fe-Al alloys. Sci Adv. 2020;6:eabb66.