1,429
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Negative temperature-dependence of stress-induced R→B19′ transformation in nanocrystalline NiTi alloy

, , , , , & show all
Pages 250-258 | Received 24 Jun 2022, Published online: 11 Nov 2022

References

  • Wollants P, Roos J, Delaey L. Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog. Mater. Sci. 1993;37:227–288.
  • Liu Y, Galvin S. Criteria for pseudoelasticity in near-equiatomic NiTi shape memory alloys. Acta Metall. 1997;45:4431–4439.
  • Wollants P, Bonte M, Roos J. Thermodynamic analysis of the stress-induced martensitic-transformation in a single-crystal. Zeitschrift fur Metall. 1979;70:113–117.
  • Timofeeva EE, Surikov NY, Tagiltsev AI, et al. The orientation dependence of thermal and stress hysteresis at R–B19′ martensitic transformation in aged Ni50.6Ti49.4 single crystals. J Alloys Compd. 2020;817:152719.
  • Stachowiak GB, McCormick PG. Shape memory behaviour associated with the R and martensitic transformations in a NiTi alloy. Acta Metall. 1988;36:291–297.
  • Churchill CB, Shaw JA, Iadicola MA. Tips and tricks for characterizing shape memory alloy wire: part 2-fundamental isothermal responses. Exp Techniques. 2009;33:51–62.
  • Wang X, Kustov S, Li K, et al. Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti–50.8 at.% Ni alloy with micron-sized grains. Acta Mater. 2015;82:224–233.
  • Miyazaki S, Otsuka K. Deformation and transition behavior associated with the R-phase in Ti-Ni alloys. Metall Trans. A. 1986;17:53–63.
  • Miyazaki S, Ohmi Y, Otsuka K, et al. Characteristics of deformation and transformation pseudoelasticity in NiTi alloys. J Phys Colloq. 1982;43:255–260.
  • Miyazaki S, Otsuka K. Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3alloy. Philos Mag A. 1984;50:393–408.
  • Ng K, Sun Q. Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes. Mech Mater. 2006;38:41–56.
  • Olbricht J, Yawny A, Pelegrina J, et al. On the stress-induced formation of R-phase in ultra-fine-grained Ni-rich NiTi shape memory alloys. Metall Mater Trans A. 2011;42:2556–2574.
  • Sedlák P, Frost M, Benešová B, et al. Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int J Plast. 2012;39:132–151.
  • Helbert G, Saint-Sulpice L, Arbab Chirani S, et al. Experimental characterisation of three-phase NiTi wires under tension. Mech Mater. 2014;79:85–101.
  • Xiao Y, Zeng P, Lei L. Experimental observations on mechanical response of three-phase NiTi shape memory alloy under uniaxial tension. Mater Res Express. 2016;3:105701.
  • Duerig TW, Pelton AR, Bhattacharya K. The measurement and interpretation of transformation temperatures in nitinol. Shap Mem Superelasticity. 2017;3:485–498.
  • Rigamonti D, Nespoli A, Villa E, et al. Implementation of a constitutive model for different annealed superelastic SMA wires with rhombohedral phase. Mech Mater. 2017;112:88–100.
  • Shi X, Ma Z, Zhang J, et al. Grain size effect on the martensitic transformation temperatures of nanocrystalline NiTi alloy. Smart Mater Struct. 2015;24:072001.
  • Lin HC, Wu SK. Determination of heat of transformation in a cold-rolled martensitic TiNi alloy. Metall Trans A. 1993;24:293–299.
  • Chen H, Xiao F, Liang X, et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement. Scr Mater. 2019;162:230–234.
  • Song Y, Jin M, Han X, et al. Microstructural origin of ultrahigh damping capacity in Ni50.8Ti49.2 alloy containing nanodomains induced by insufficient annealing and low-temperature aging. Acta Mater. 2021;205:116541.
  • Miyazaki S, Wayman CM. The R-phase transition and associated shape memory mechanism in Ti-Ni single crystals. Acta Metall. 1998;36:181–192.
  • Shindo D, Murakami Y, Ohba T. Understanding precursor phenomena for the R phase transformation in Ti-Ni-based alloys. MRS Bull. 2002;27:121–127.
  • Wang D, Zhang Z, Zhang J, et al. Strain glass in Fe-doped Ti–Ni. Acta Mater. 2010;58:6206–6215.
  • Šittner P, Landa M, Lukáš P, et al. R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals. Mech Mater. 2006;38:475–492.
  • Wang X, Verlinden B, Humbeeck J. R-phase transformation in NiTi alloys. Mater Sci Technol. 2014;30:1517–1529.
  • Liang X, Xiao F, Jin M, et al. Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8Ni (at. %) Alloy. Scr Mater. 2017;134:42–46.
  • Salje EK, Zhang H, Planes A, et al. Martensitic transformation B2-R in Ni-Ti-Fe: experimental determination of the landau potential and quantum saturation of the order parameter. J Phys Condens Matter. 2008;20:275216.
  • Bonsignore C, Shamini A, Duerig T. The role of parent phase compliance on the fatigue lifetime of Ni–Ti. Shap Mem Superelasticity. 2019;5:407–414.
  • Waitz T, Antretter T, Fischer FD, et al. Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys. Mater Sci Technol. 2013;24:934–940.
  • Waitz T, Antretter T, Fischer FD, et al. Size effects on the martensitic phase transformation of NiTi nanograins. J Mech Phys Solids. 2007;55:419–444.
  • Waitz T, Kazykhanov V, Karnthaler HP. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2004;52:137–147.
  • Shi X, Guo F, Zhang J, et al. Grain size effect on stress hysteresis of nanocrystalline NiTi alloys. J Alloys Compd. 2016;688:62–68.
  • Wang T, Ma Z, Rao X, et al. Temperature-dependence of superelastic stress in nanocrystalline NiTi with complete transformation capability. Intermetallics. 2020;127:106970.
  • Feng B, Kong X, Hao S, et al. In-situ synchrotron high energy X-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy. Acta Mater. 2020;194:565–576.
  • Prokoshkin S, Dubinskiy S, Brailovski V. Features of a nanosubgrained structure in deformed and annealed Ti–Ni SMA: a brief review. Shap Mem Superelasticity. 2019;5:336–345.
  • Wang S, Cui L, Hao S, et al. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix. Sci Rep. 2014;4:6753.
  • Shi X, Cui L, Jiang D, et al. Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys. J Mater Sci. 2014;49:4643–4647.
  • Liang X, Xiao F, Chen H, et al. Internal friction of the R-phase in single crystalline Ti-50.8Ni (at.%) alloy containing controlled precipitate of Ti3Ni4. Scr Mater. 2019;166:44–47.
  • Zhang J, Wang Y, Ding X, et al. Spontaneous strain glass to martensite transition in a Ti50Ni44.5Fe5.5strain glass. Phys. Rev. B. 2011;84:214201.
  • Hung C, Roy K. Stress-induced shape changes and shape memory in the R and martensite transformations in equiatomic NiTi. Metall Trans A. 1981;12:2101–2111.
  • Nicholson DE, Padula SA, Benafan O, et al. Mapping of texture and phase fractions in heterogeneous stress states during multiaxial loading of biomedical superelastic NiTi. Adv Mater. 2021;33:e2005092.
  • Sittner P, Liu Y, Novak V. On the origin of Lüders-like deformation of NiTi shape memory alloys. J Mech Phys Solids. 2005;53:1719–1746.
  • Salamon MB, Meichle ME, Wayman CM, et al. Premartensitic phases of Ti50Ni47Fe3. Phys Rev B. 1985;31:7306–7315.
  • Sittner P, Lugovoy D, Neov D, et al. In situ neutron diffraction studies of the R-phase transformation in the NiTi shape memory alloy. Appl Phys A Mater Sci Process. 2002;74:1121–1123.
  • Rao J, Ma R, He Y. Incommensurate and commensurate phase transitions in Ti-Ni-Fe alloy. Acta Metall Sinica. 1990;3:89–92.
  • Goryczka T, Morawiec H. Structure studies of the R-phase using X-ray diffraction methods. J Alloys Compd. 2004;367:137–141.
  • Kang G, Zhang H, Ma Z, et al. Large thermal hysteresis in a single-phase NiTiNb shape memory alloy. Scr Mater. 2022;212:114574.
  • Niitsu K, Kainuma R. Effect of annealing on stress-induced transformation behaviors at low temperatures in a Ti-51.8 at.% Ni shape memory alloy. Phys Status Solidi B. 2014;251:2041–2047.
  • Niitsu K, Omori T, Kainuma R. Stress-induced transformation behaviors at low temperatures in Ti-51.8Ni (at. %) shape memory alloy. Appl Phys Lett. 2013;102:231915.
  • Niitsu K, Date H, Kainuma R. Thermal activation of stress-induced martensitic transformation in Ni-rich Ti-Ni alloys. Scr Mater. 2020;186:263–267.
  • Pang EL, Olson GB, Schuh CA. The mechanism of thermal transformation hysteresis in ZrO2-CeO2 shape-memory ceramics. Acta Mater. 2021;213:116972.
  • Miyazaki S, Kimura S, Otsuka K. Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50·5 at.% Ni single crystals. Philos Mag A. 1988;57:467–478.
  • Lexcellent C, Zikowski A, Tanaka K. Thermodynamical model of reversible R-phase transformation in TiNi shape memory alloy. Int. J. Pressure Vessels Piping. 1994;58:51–57.
  • Niitsu K, Xu X, Umetsu RY, et al. Stress-induced transformations at low temperatures in a Ni45Co5Mn36In14 metamagnetic shape memory alloy. Appl Phys Lett. 2013;103:242406.
  • Frost M, Jury A, Heller L, et al. Experimentally validated constitutive model for NiTi-based shape memory alloys featuring intermediate R-phase transformation: a case study of Ni48Ti49Fe3. Mater. Des. 2021;203:109593.
  • Laplanche G, Birk T, Schneider S, et al. Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys. Acta Mater. 2017;127:143–152.
  • Wang Y, Ren X, Otsuka K, et al. Temperature–stress phase diagram of strain glass Ti48.5Ni51.5. Acta Mater. 2008;56:2885–2896.
  • Zhang J, Xue D, Cai X, et al. Dislocation induced strain glass in Ti50Ni45Fe5 alloy. Acta Mater. 2016;120:130–137.
  • Zhou Y, Xue D, Ding X, et al. Strain glass in doped Ti50(Ni50−xDx) (D = Co, Cr, Mn) alloys: implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Mater. 2010;58:5433–5442.
  • Chien C, Tsao C, Wu S, et al. Characteristics of the strain glass transition in as-quenched and 250 C early-aged Ti48.7Ni51.3 shape memory alloy. Acta Mater. 2016;120:159–167.
  • Xu S, Pons J, Santamarta R, et al. Strain glass state in Ni-rich Ni-Ti-Zr shape memory alloys. Acta Mater. 2021;218:117232.
  • Hwang CM, Meichle M, Salamon MB, et al. Transformation behaviour of a Ti50Ni47Fe3 alloy I. premartensitic phenomena and the incommensurate phase. Philos Mag A. 2006;47:9–30.
  • Pushin VG, Kourov NI, Kuranova NN, et al. Structure and phase transformations in TiNiFe ternary alloys subjected to plastic deformation by high-pressure torsion and subsequent heat treatment. Phys Met Metallogr. 2014;115:365–379.
  • Wang X, Li C, Verlinden B, et al. Effect of grain size on aging microstructure as reflected in the transformation behavior of a low-temperature aged Ti–50.8at.% Ni alloy. Scr Mater. 2013;69:545–548.
  • Wang X, Li K, Schryvers D, et al. R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti–50.8 at.% Ni thin wire. Scr Mater. 2014;72:21–24.
  • Jin M, Song Y, Wang X, et al. Ultrahigh damping capacity achieved by modulating R phase in Ti49.2Ni50.8 shape memory alloy wires. Scr Mater. 2020;183:102–106.
  • Wang X, Van Humbeeck J, Verlinden B, et al. Thermal cycling induced room temperature aging effect in Ni-rich NiTi shape memory alloy. Scr Mater. 2016;113:206–208.
  • Mahmud AS, Wu Z, Yang H, et al. Effect of cold work and partial annealing on thermomechanical behaviour of Ti-50.5 at% Ni. Shap Mem Superelasticity. 2017;3:57–66.
  • Wang X, Pu Z, Yang Q, et al. Improved functional stability of a coarse-grained Ti-50.8 at.% Ni shape memory alloy achieved by precipitation on dislocation networks. Scr Mater. 2019;163:57–61.