1,235
Views
0
CrossRef citations to date
0
Altmetric
Original reports

Determinants of local chemical environments and magnetic moments of high-entropy alloys

, &
Pages 259-265 | Received 24 Oct 2022, Published online: 11 Nov 2022

References

  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi:10.1002/adem.200300567
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi:10.1016/j.pmatsci.2013.10.001
  • Ye YF, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today. 2016;19:349–362. doi:10.1016/j.mattod.2015.11.026
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi:10.1016/j.actamat.2016.08.081
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515–534. doi:10.1038/s41578-019-0121-4
  • Zhang Y, Osetsky YN, Weber WJ. Tunable chemical disorder in concentrated alloys: defect physics and radiation performance. Chem Rev. 2022;122:789–829. doi:10.1021/acs.chemrev.1c00387
  • Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61:5743–5755. doi:10.1016/j.actamat.2013.06.018
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi:10.1126/science.1254581
  • Ma D, Grabowski B, Körmann F, et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 2015;100:90–97. doi:10.1016/j.actamat.2015.08.050
  • Troparevsky MC, Morris JR, Daene M, et al. Beyond atomic sizes and Hume-Rothery rules: understanding and predicting high-entropy alloys. JOM. 2015;67:2350–2363. doi:10.1007/s11837-015-1594-2
  • Wang S, Zhang T, Hou H, et al. The magnetic, electronic, and thermodynamic properties of high entropy alloy CrMnFeCoNi: a first-principles study. Phys status solidi. 2018;255:1800306. doi:10.1002/pssb.201800306
  • Tamm A, Aabloo A, Klintenberg M, et al. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys. Acta Mater. 2015;99:307–312. doi:10.1016/j.actamat.2015.08.015
  • Niu C, Zaddach AJ, Oni AA, et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl Phys Lett. 2015;106:161906. doi:10.1063/1.4918996
  • Schneeweiss O, Friák M, Dudová M, et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys Rev B. 2017;96:014437. doi:10.1103/PhysRevB.96.014437
  • Zhang FX, Zhao S, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys Rev Lett. 2017;118:205501. doi:10.1103/PhysRevLett.118.205501
  • Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc Natl Acad Sci USA. 2018;115:8919–8924. doi:10.1073/pnas.1808660115
  • Pei Z, Li R, Gao MC, et al. Statistics of the NiCoCr medium-entropy alloy: novel aspects of an old puzzle. npj Comput Mater. 2020;6:122. doi:10.1038/s41524-020-00389-1
  • Walsh F, Asta M, Ritchie RO. Magnetically driven short-range order can explain anomalous measurements in CrCoNi. Proc Natl Acad Sci USA. 2021;118:e2020540118. doi:10.1073/pnas.2020540118
  • Slater JC. The ferromagnetism of Nickel. II. temperature effects. Phys Rev. 1936;49:931–937. doi:10.1103/PhysRev.49.931.
  • Pauling L. The Nature of the interatomic forces in metals. Phys Rev. 1938;54:899–904. doi:10.1103/PhysRev.54.899
  • Lowitzer S, Ködderitzsch D, Ebert H, et al. Electronic transport in ferromagnetic alloys and the Slater-Pauling curve. Phys Rev B. 2009;79:115109. doi:10.1103/PhysRevB.79.115109
  • Rao Z, Çakır A, Özgün Ö, et al. 3d transition-metal high-entropy invar alloy developed by adjusting the valence-electron concentration. Phys Rev Mater. 2021;5:044406. doi:10.1103/PhysRevMaterials.5.044406
  • GUO S, LIU CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int. 2011;21:433–446. doi:10.1016/S1002-0071(12)60080-X
  • Poletti MG, Battezzati L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 2014;75:297–306. doi:10.1016/j.actamat.2014.04.033
  • Santodonato LJ, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun. 2015;6:5964. doi:10.1038/ncomms6964
  • Troparevsky MC, Morris JR, Kent PRC, et al. Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X. 2015;5:011401. doi:10.1103/PhysRevX.5.011041.
  • Kresse G, Furthmüller J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186. doi:10.1103/PhysRevB.54.11169
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979. doi:10.1103/PhysRevB.50.17953
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi:10.1103/PhysRevLett.77.3865
  • Harrison WA. Electronic structure and the properties of solids. New York: Dover Publications; 1980.
  • Turchanin MA, Agraval PG. Cohesive energy, properties, and formation energy of transition metal alloys. Powder Metall Met Ceram. 2008;47:26–39. doi:10.1007/s11106-008-0006-3
  • Chen W, Ding X, Feng Y, et al. Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance. J Mater Sci Technol. 2018;34:355–364. doi:10.1016/j.jmst.2017.11.005
  • Guan H, Huang S, Ding J, et al. Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 2020;187:122–134. doi:10.1016/j.actamat.2020.01.044
  • Shimizu M. Itinerant electron magnetism. Rep Prog Phys. 1981;44:329–409. doi:10.1088/0034-4885/44/4/001
  • Becke AD, Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys. 1990;92:5397–5403. doi:10.1063/1.458517
  • Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci. 2006;36:354–360. doi:10.1016/j.commatsci.2005.04.010
  • Zuo T, Gao MC, Ouyang L, et al. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 2017;130:10–18. doi:10.1016/j.actamat.2017.03.013
  • Marshal A, Pradeep KG, Music D, et al. Combinatorial evaluation of phase formation and magnetic properties of FeMnCoCrAl high entropy alloy thin film library. Sci Rep. 2019;9:7864. doi:10.1038/s41598-019-44351-8
  • Chen S, Wang T, Li X, et al. Short-range ordering and its impact on thermodynamic property of high-entropy alloys. Acta Mater. 2022;238:118201. doi:10.1016/j.actamat.2022.118201