1,143
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Harnessing defects for high-performance MoS2 tunneling field-effect transistors

ORCID Icon, &
Pages 266-273 | Received 30 Jun 2022, Published online: 16 Nov 2022

References

  • Moore GE. (2006). Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff., IEEE Solid-State Circuits Society Newsletter 11, 33.
  • International roadmap for devices and systems (IRDSTM). (2020 edition). https://irds.ieee.org/editions/2020.
  • Godoy A, Lopez-Villanueva JA, Jimenez-Tejada JA, et al. A simple subthreshold swing model for short channel MOSFETs. Solid State Electron. 2001;45:391.
  • Oh SH, Monroe D, Hergenrother J. Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Lett. 2000;21:445.
  • Taur Y, Ning TH. Fundamentals of modern VLSI devices. Cambridge (England): Cambridge University Press; 1998.
  • Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 2011;479:329.
  • Avci UE, Morris DH, Young IA. Ieee journal of the electron devices society information for authors. IEEE J Electron Dev Soc. 2015;3:C3.
  • Zhang Q, Zhao W, Seabaugh A. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 2006;27:297.
  • Zener C. (1932). Proceedings of the Royal Society A pp. 696.
  • Sarkar D, Xie X, Liu W, et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature. 2015;526:91.
  • Roy T, Tosun M, Xi C, et al. Dual-Gated MoS2/WSe van der Waals tunnel diodes and transistors. Acs Nano. 2015;9:2071.
  • Gong C, Zhang HJ, Wang WH, et al. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl Phys Lett. 2013;103:329.
  • Verhulst AS, Vandenberghe WG, Maex K, et al. Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. J Appl Phys. 2008;104:064514.
  • Kim S, Myeong G, Shin W, et al. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat Nanotechnol. 2020;15:203.
  • Zhou WH, Qu HZ, Guo SY, et al. Dependence of tunneling mechanism on two-dimensional material parameters: a high-throughput study. Phys Rev Appl. 2022;17:6.
  • Liu Y, Duan X, Shin HJ, et al. Promises and prospects of two-dimensional transistors. Nature. 2021;591:7848.
  • Liu C, Chen H, Wang S, et al. The switch is on. Nat Nanotechnol. 2020;15:7.
  • Yu ZH, Ong ZY, Li SL, et al. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv Mater. 2017;27:1604093.
  • Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6:147.
  • Baugher BWH, Churchill HOH, Yang Y, et al. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett 2013;13:4212.
  • Jariwala D, Sangwan VK, Late DJ, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett. 2013;102:173107.
  • Schmidt H, Wang SF, Chu LQ, et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett 2014;14:1909.
  • Wan Y, Li E, Yu ZH, et al. Low-defect-density WS2 by hydroxide vapor phase deposition. Nat Commun. 2022;13:4149.
  • Cheng J, Poehler S, Laskar M, et al. Temperature dependent carrier transport in few-layered MoS2: from hopping to band transport. J Phys D: Appl Phys. 2022;55:195109.
  • Qiu H, Xu T, Wang ZL, et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat Commun. 2013;4:2642.
  • Zhu WJ, Low T, Lee YH, et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun. 2014;5:3087.
  • Ovchinnikov D, Allain A, Huang YS, et al. Electrical transport properties of single-layer WS2. Acs Nano. 2014;8:8174.
  • Zhou W, Zou XL, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013;13:2615.
  • Zhang XK, Liao QL, Liu ZKBS, et al. Hidden vacancy benefit in monolayer 2D semiconductors. Adv Mater. 2021;33:7.
  • Brandbyge M, Mozos JL, Ordejon P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B. 2002;65:16.
  • Datta S. Electronic transport in mesoscopic systems. Cambridge: Cambridge University Press; 1995.
  • Gunst T, Markussen T, Palsgaard MLN, et al. First-principles electron transport with phonon coupling: large scale at low cost. Phys Rev B. 2017;96:16.
  • Jiang JW, Park HS, Rabczuk T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J Appl Phys. 2013;114:6.
  • Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. 2010;105:13.
  • Hong JH, Hu ZX, Probert M, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun. 2015;6:6293.
  • Liang QJ, Zhang Q, Zhao XX, et al. Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities. ACS Nano. 2021;15:2165.